dc.contributorMartínez Bonilla, Carlos Andres
dc.contributorUniversidad Santo Tomás
dc.creatorRueda Wandurraga, Verónica Lucía
dc.date.accessioned2021-09-09T22:37:13Z
dc.date.available2021-09-09T22:37:13Z
dc.date.created2021-09-09T22:37:13Z
dc.date.issued2021-09-09
dc.identifierRueda Wandurraga, V. L. (2021). Aprovechamiento de biomasa lignocelulósica de semilla de aguacate (Persea Americana Mill): evaluación de la capacidad fungistática y adsorción de metales pesados en solución acuosa [Trabajo de Pregrado]. Universidad Santo Tomás. Bucaramanga, Colombia.
dc.identifierhttp://hdl.handle.net/11634/35499
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractCurrently, one of the environmental challenges of researchers at national and international level is the use of renewable materials and the use of their biological, chemical and physical properties. These materials include residues from natural sources generally known as residual biomass. The seed of the Persea americana Mill (common name: avocado or avocado) is considered as "residue" of the food industry. To provide an additional alternative to those existing for the exploitation of avocado seed, it is proposed in this research to evaluate the chemical, biological and physical properties. In this way, the comparative study of the extraction of the seed of Persea americana Mill was carried out by various techniques (percolation, Soxleth, MWHD), being the Soxleth-type ethanolic extraction in which a higher percentage of extraction was obtained (7.7 %). The ethanolic extract obtained was characterized by UV-Vis, IR, NMR and GC-MS, techniques that allowed identifying that the major compounds are avocatins. The evaluation of the biological properties of the Botrytis cinerea strain DSM5144 with the ethanolic extract of the avocado seed which demonstrated its fungistatic power with a percentage of inhibition of 82 % of the radial growth of the plant pathogen at a concentration of 6.0 mg/mL under the plate dilution technique. During the in vivo trial on fragaria fruits, a 40 % inhibition of phytopathogenic growth was obtained in 96 h. Likewise, the physical capacities of the seed residue as raw material to produce filtration systems for filter media used in the decontamination of water bodies contaminated with heavy metals (Pb, Cr, Cu, Cd and Hg) were evaluated. In this research, filter media were developed from the residual biomass of avocado modified with acid and the coupling of nanoparticles on the same calcined biomass (biochar). The filtering media were characterized by IR, SEM and TEM techniques that allowed identifying acid treatment as the most effective for the formation of pores in biomass and to corroborate those magnetic nanoparticles were coupled during synthesis on the biochar. Finally, the filter media were evaluated for bioadsorption, where the most relevant result was obtained when the residual avocado biomass was used for the removal of mercury in solution (100 ppm) with 91% removal. These results allowed to postulate the residual biomass of the utilization of the avocado as source of an extract with biological properties as fungistatic control agent on the phytopathogenic fungus Botrytis cinerea and from this material to obtain means filters that serve as a viable alternative for removal of metals in water, allowing to give an added value to a waste favoring the decrease of the environmental impact.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Química Ambiental
dc.publisherFacultad de Química Ambiental
dc.relationA. Rezi and M. Allam,. (1995). Techniques in array processing by means of transformations . En Control and Dynamic Systems Vol. 69 (págs. 133-180). San Diego: Academic Press.
dc.relationA. Torres, T. M.-L. (1987). avocado, Total phenolics and highperformance liquid chromatography of phenolic acids of. Journal of Agricultural and Food Chemistry, 35, 921-925. doi:10.1021/jf00078a018
dc.relationAbdolali, A., Ngo, H., Guo, W., Zhou, J., Du, B., Wei, Q., . . . Nguyen, P. (2015). Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies. Bioresource Technology, 193, 477-487. doi:10.1016/j.biortech.2015.06.123
dc.relationAditiya, H., Chong, W., Mahlia, T., Sebayang, A., Berawi, M., & Nur, H. (2016). Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: A review. Waste Management. ScienceDirect, 47, 46-61. doi:10.1016/j.wasman.2015.07.031
dc.relationAgrios, G. (2005). Fitopatología (Segunda ed.). LIMUSA S.A.
dc.relationAlger, R. (2009). Magnetic Resonance Spectroscopy. Elsevier, 601-607. doi:10.1016/B978-008045046-9.00300-4
dc.relationAl-Hetar, M., Zainal Abidin, M., Sariah, M., & Wong, M. (2010). Antifungal Activity of Chitosan against Fusarium oxysporum f. sp cubense. Journal of Applied Polymer Scienc, 120(4), 2434-2439. doi:10.1002/app.33455
dc.relationAndrews, J. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, XLVIII, 5-16. doi:10.1093/jac/48.suppl_1.5
dc.relationAsadieraghi, M., & Wan Daud, W. (2014). Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Conversion and Management, 82, 71-82. doi:10.1016/j.enconman.2014.03.007
dc.relationAzcona-Cruz, M., Ramírez Ayala, R., & Vicente-Flores, G. (2015). Efectos tóxicos del plomo. Revista de especialidades médico-quirúrgicas, XX, 72-77.
dc.relationBailey, P. (2001). Química orgánica: conceptos y aplicaciones (Quinta ed.). Prentice Hall.
dc.relationBakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106
dc.relationBakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106
dc.relationBarceló, D. (2003). Emerging pollutants in water analysis. TrACT Trends in Analytical Chemestry, 22(10), 14-16. doi:10.1016/S0165-9936(03)01106-3
dc.relationBarroso, M. (2010). Pretratamiento de biomasa celulosica para la obtención de etanol en el marco de una biorrefinería. Madrid: Universidad Politécnica de Madrid.
dc.relationBasu, P. (2010). Biomass Gasificacion and Pyrolysis. En P. Basu, Biomass Gasificacion and Pyrolysis (pág. 376). doi:doi.org/10.1016/B978-0-12-374988-8.00002-7
dc.relationBayramoglu, B., Sahin, S., & Sumnu, G. (2008). Solvent-free microwave extraction of essential oil from oregano. Journal of Food Engineering, 88(4), 535-540. doi:10.1016/j.jfoodeng.2008.03.015
dc.relationBerg, J., Tymoczko, J., & Stryer, L. (2007). Bioquímica (Sexta ed.). Barcelona: Reverté.
dc.relationBhaumik, M., Choi, H. J., Seopela, M. P., McCrindl, R., & Maity, A. (2014). Highly Effective Removal of Toxic Cr(VI) from Wastewater Using Sulfuric Acid-Modified Avocado Seed. Industrial & Engineering Chemistry Research, 53(3), 1214-1224. doi:10.1021/ie402627d
dc.relationBhaumik, M., Choi, H., Seopela, M., Mccrindle, R., & Maity, A. (2014). Highly Effective Removal of Toxic Cr(VI) from Wastewater Using Sulfuric Acid-Modified Avocado Seed. Industrial & Engineering Chemestry Research, 53, 1214-1224. doi:10.1021/ie402627d
dc.relationBiswas, P., Karn, A., Balasubramanian, P., & Kale, P. (2017). Biosensor for detection of dissolved chromium in potable water: A review. En P. Biswas, A. Karn, P. Balasubramanian, & P. Kale, Biosensors and Bioelectronics (Vol. XCIV, págs. 589-604). Odisha: Elsevier. doi:10.1016/j.bios.2017.03.043
dc.relationBoadi, N., Ama Saah, S., Mensah John, K., Badu, M., Arhinand Sylvester, A., & Baah Mensah, M. (2015). Phytoconstituents, antimicrobial and antioxidant properties of the leaves of Persea americana Mill cultivated in Ghana. Journal of medicinal plant research, 9(36), 933-939. doi:10.5897/JMPR2015.5902
dc.relationBora, P., Narain, N., Rocha, R., & Paulo, M. (2001). Characterization of the oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. Grasas y aceites, 52(3), 171-174. doi:10.3989/gya.2001.v52.i3-4.353
dc.relationBüyükköroğlu, G., Demir, D., Özdemir, F., & Hızel, C. (2018). Techniques for Protein Analysis. En G. Büyükköroğlu, D. Demir, F. Özdemir, & C. Hızel, Omics Technologies and Bio-Engineering (págs. 317-351). Academic Press. doi:10.1016/B978-0-12-804659-3.00015-4
dc.relationC R Lima, C. F.-S. (2012). Anti-diabetic activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/Akt) in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 141, 517–525. doi:10.1016/j.jep.2012.03.026
dc.relationCantón , E., Martín, E., & Espinel, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3, M38-A y M44-A). Revista Iberoamericana de Micología, 1-17. Obtenido de http://www.guia.reviberoammicol.com/Capitulo15.pdf
dc.relationCardoso, P., Scarpassa, J., Giordano-Prettp, L., Otaguiri, E., Ogatta-Yamada, S., Nakazato, G., . . . Boas-Vilas, G. (2016). Actividad antibacteriana de extractos de aguacate (Persea americana Mill.) Contra Streptococcus agalactiae. International Journal Of Experimental Botany, 85, 218-224.
dc.relationChávez, Á., & Rodriguéz, A. (2016). Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica. Academia y virtualidad, 9(2), 90-107. doi:10.18359/ravi.2004
dc.relationChirayil, C., Abraham, J., Mishra, R., George, S., & Thomas, S. (2017). Instrumental Techniques for the Characterization of Nanoparticles. En C. Chirayil, J. Abraham, R. Mishra, S. George, & S. Thomas, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization (págs. 1-36). Micro and Nano Technologies. doi:10.1016/B978-0-323-46139-9.00001-3
dc.relationChoppala, G., Bolan, N., & Park, J.-H. (2013). Chromium Contamination and Its Risk Management in Complex Environmental Settings. Advances in Agronomy, 120, 129-172. doi:10.1016/B978-0-12-407686-0.00002-6
dc.relationCortés, W. (2014). Tratamientos Aplicables a Materiales Lignocelulósicos para la Obtención de Etanol y Productos Químicos. Journal of Technology, 13(1), 39-44.
dc.relationCuziano, N., Reyes, U., Dominguez, S., Llanos, B., & Navarro, A. (2010). Relevancia del PH en la adsorción de iones metálicos mediante algas pardas. Sociedad Química de Perú, 76(2), 123-130.
dc.relationDa̧browski, A., Hubicki, Z., Podkościelny, P., & Robens, E. (2004). Selective Removal of the Heavy Metal Ions From Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere, 56(2), 91-106. doi:10.1016/j.chemosphere.2004.03.006
dc.relationde Ven, A., Mack, A., Dunner, K., Ferrari, M., & Serda, R. (2012). Preparation, Characterization, and Cellular Associations of Silicon Logic-Embedded Vectors. En A. de Ven, A. Mack, K. Dunner, M. Ferrari, & R. Serda, Methods in Enzymology (Vol. 508, págs. 1-16). Elsevier. doi:10.1016/B978-0-12-391860-4.00001-X
dc.relationDeuschla, V., Cruz, R., Flores, V., Denardi, L., Deuschle, R., Rossi, G., . . . Viena, C. (2019). Persea americana: Phenolic profile, antioxidant potential, antimicrobial activity and in silico prediction of pharmacokinetic and toxicological properties. Indian Journal of Pharmaceutical Sciences, 81(4), 766-775.
dc.relationDíaz-Muñoz, L. L., Bonilla-Petriciolet, A., Reynel-Ávila, H. E., & Mendoza-Castillo, D. I. (2016). Sorption of heavy metal ions from aqueous solution using acid-treated avocado kernel seeds and its FTIR spectroscopy characterization. Journal of Moleculara Liquids, 215, 555-564. doi:10.1016/j.molliq.2016.01.022
dc.relationDionisio, E. (2012). Aprovechamiento de residuos vegetales para la eliminación de cobre presente en medios acuosos mediante biosorción. Universidad de Granada.
dc.relationEisenhuber, K., Krennhuber, K., Steinmüller, V., & Jäger, A. (2013). Comparison of Different Pre-treatment Methods for Separating Hemicellulose from Straw During Lignocellulose Bioethanol Production. Energy Procedia, 40, 172-181. doi:10.1016/j.egypro.2013.08.021
dc.relationElizalde, M., Mattusch, J., Peláez, A., & Wennrich, R. (2007). Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms. Journal of Analytical and Applied Pyrolysis, LXXVIII(1), 185-193. doi:10.1016/j.jaap.2006.06.008
dc.relationEstrada, A., Gallo, M., & Nuñez, E. (2016). Contaminación ambiental, su influencia en el ser humano, en especial: el sistema reproductor femenino. Universidad y Sociedad, 8(3), 80-86.
dc.relationFalodun, A., Imieje, V., Erharuyi, O., Ahomafor, J., Jacob, M., Khan, S., & Hamann, M. (2014). Evaluation of three medicinal plant extracts against Plasmodium Falciparum and selected microganisms. African Journal of Traditional, Complementary and Alternative Medicines, 11(4), 142-146. doi:10.4314/ajtcam.v11i4.22
dc.relationFernández, B., Lobo, L., & Pereiro, R. (2019). Atomic Absorpton Spectrometry | Fundamentals, Instrumentation and Capabilities. En B. Fernández, L. Lobo, & R. Pereiro, Encyclopedia of Analytical Science (págs. 137-143). Elsevier. doi:doi.org/10.1016/B978-0-12-409547-2.14116-2
dc.relationGara Sánchez Barrón , G. (2016). ECOTOXICOLOGÍA DEL CADMIO. UNIVERSIDAD COMPLUTENSE. FACULTAD DE FARMACIA . Obtenido de http://147.96.70.122/Web/TFG/TFG/Memoria/GARA%20SANCHEZ%20BARRON.pdf
dc.relationGhazanfari, M., Kashefi, M., & Jaafari, M. (2016). Investigation of stabilization mechanism and size controlling of Fe3O4 nanoparticles using anionic chelating agents. Applied Surface Science, 375(1), 50-56. doi:10.1016/j.apsusc.2016.03.067
dc.relationGiffoni Leite, J. J., Salles Brito, É. H., Aguiar Cordeiro, R., Nogueira Brilhante, R. S., Costa Sidrim, J. J., Medeiros Bertini, L., . . . Gadelha Rocha, M. F. (2009). Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Revista da Sociedade Brasileira de Medicina Tropical, 12(2). doi:10.1590/S0037-86822009000200003
dc.relationGil, Á. (2010). Tratado de nitrición: Bases fisiologicas y bioquímicas de la nitricion (Segunda ed.). Madrid: Médica Panamericana.
dc.relationGramshaw, J., & Sinyinda, S. (1998). .Volatiles of avocado fruit. Food Chemistry, 62(4), 483-487. doi:10.1016/S0308-8146(97)00190-8
dc.relationGuarda, C., & Gomero, J. (2009). Determinación de plomo en suelos debido a la contaminación por fábricas aledañas al Asentamiento Humano cultura y progreso del distrito de Ñaña-Chaclacayo. Perú.
dc.relationGuarín, Y., Patiño, M., & Martínez, J. (2019). Identificación del agente causal de la pudrición parda en frutos de duraznero (Prunus pérsica, L. Batsch) en Boyacá. Ciencias Agrarias, 15(1), 298-309.
dc.relationGunay, M., Kavas, H., & Baykal, A. (2013). Simple polyol route to synthesize heptanoic acid coated magnetite (Fe3O4) nanoparticles. Materials Research Bulletin, 48(3), 1296-1303. doi:10.1016/j.materresbull.2012.12.028
dc.relationGupta, P. (2018). Toxicity of fungicides. En G. Pawand, Veterinary Toxixology (págs. 569-580). Elsevier. doi:10.1016/B978-0-12-811410-0.00045-3
dc.relationGupta, V., Pathania, D., Sharma, S., Agarwal, S., & Singh, P. (2013). Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. Journal of Molecular Liquids, 177(343-352). doi:10.1016/j.molliq.2012.10.017
dc.relationGuzmán, R., Galíndez, J., Dorantes, L., & Ortiz, A. (2003). Effect of Different Extraction Methods on Fatty Acids, Volatile Compounds, and Physical and Chemical Properties of Avocado (Persea americana Mill.) Oil. Journal of Agricultural and Food Chemistry, 51(8), 2216-2221. doi:10.1021/jf0207934
dc.relationHall, M. (2014). Finishing of technical textiles. En M. Hall, Handbook of Technical Textiles (págs. 152-172). Bolton: Instituto Bolton. doi:10.1533/9781855738966.152
dc.relationHu, H., & Xu, K. (2019). Physicochemical technologies for HRPs and risk control. En H. Hu, & K. Xu, High-Risk Pollutants in Wastewater (págs. 169-207). Nanjing: School of the Environment. doi:10.1016/B978-0-12-816448-8.00008-3
dc.relationHuong, P., Huy, L., Lan, H., Thang, L., An, T., Quy, N., . . . Le, A.-T. (2018). Magnetic iron oxide-carbon nanocomposites: Impacts of carbon coating on the As(V) adsorption and inductive heating responses. Journal of Alloys and Compounds, 739(30), 139-148. doi:10.1016/j.jallcom.2017.12.178
dc.relationJacobsen, N. (2007). NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology. John Wiley & Sons. doi:10.1002/9780470173350.ch1
dc.relationJacometti, M., Wratten, S., & Walter , M. (2010). Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Australian Journal of Grape and Wine Research, 16(1), 154-172. doi:10.1111/j.1755-0238.2009.0067.x
dc.relationJeff rey H. Simpson, J. (2008). Organic Structure Determination Using 2-D NMR Spectroscopy. Canadá: Elsevier.
dc.relationJi, Z. (2016). Use of compositional and combinatorial nanomaterial libraries for biological studies. En Z. Ji, Science Bulletin (Vol. LXI, págs. 755-771). China: Springer. doi:10.1007/s11434-016-1069-z
dc.relationKadakia, K. (2008). Removal of Arsenic Contamination from Water Using Magnetite Nanoparticles. 1-7.
dc.relationKafarov, V., Ojeda, K., & Sánchez, E. (2006). Situación y perspectiva de biocombustibles en Colombia. Encontro de Energia no Meio Rural.
dc.relationKim, J., Yun, K., & Jung, H. (2013). Investigation of optimal thermal injection conditions and the capability of IR thermography for detecting wall-thinning defects in small-diameter piping components. Nuclear Engineering and Design, 262, 39-51. doi:10.1016/j.nucengdes.2013.03.027
dc.relationKurniawan, T., Chan, G., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), 83-98. doi:10.1016/j.cej.2006.01.015
dc.relationLarios, M. (2014). Niveles de Cd, Co, Cr, Cu, Ni, Pb y Zn en los suelos de ribera de la cuenca del rio Turia. España: Universidad de LLeida.
dc.relationLata, S., Singh, P., & Samadder, S. (2014). Regeneration of adsorbents and recovery of heavy metals: A review. International Journal of Environmental Science and Technology, XII(4), 1461-1478. doi:10.1007/s13762-014-0714-9
dc.relationLaurella, S. (2017). Resonancia magnética nuclear. La Plata: Editorial de la Universidad de la Plata.
dc.relationLenntech Tratamiento de agua & purificación. (s.f.). Propiedades químicas del Cadmio - Efectos del Cadmio sobre la salud - Efectos ambientales del Cadmio. Recuperado el 16 de Enero de 2020, de Propiedades químicas del Cadmio - Efectos del Cadmio sobre la salud - Efectos ambientales del Cadmio: https://www.lenntech.es/periodica/elementos/cd.htm
dc.relationLenntech Tratamiento de agua & purificación. (s.f.). Propiedades químicas del Cobre - Efectos del Cobre sobre la salud - Efectos ambientales del Cobre. Recuperado el 16 de Enero de 2020, de Propiedades químicas del Cobre - Efectos del Cobre sobre la salud - Efectos ambientales del Cobre: https://www.lenntech.es/periodica/elementos/cr.htm
dc.relationLenntech Tratamiento de agua & purificación. (s.f.). Propiedades químicas del Cromo - Efectos del Cromo sobre la salud - Efectos ambientales del Cromo. Recuperado el 16 de Enero de 2020, de Propiedades químicas del Cromo - Efectos del Cromo sobre la salud - Efectos ambientales del Cromo: https://www.lenntech.es/periodica/elementos/cr.htm
dc.relationLenntech Tratamiento de agua & purificación. (s.f.). Propiedades químicas del Mercurio - Efectos del Mercurio sobre la salud - Efectos ambientales del Mercurio. Recuperado el 16 de Enero de 2020, de Propiedades químicas del Mercurio - Efectos del Mercurio sobre la salud - Efectos ambientales del Mercurio: https://www.lenntech.es/periodica/elementos/hg.htm
dc.relationLim, W., Kim, J., Kim, H., Choi, J., Choi, I., & Lee, J. (2013). Structural properties of pretreated biomass from different acid pretreatments and their effects on simultaneous saccharification and ethanol fermentation. Bioresource Technology, 139, 214-219. doi:10.1016/j.biortech.2013.04.009
dc.relationLiu, S., Che, Z., & Che, G. (2016). Multiple-fungicide resistance to carbendazim, diethofencarb, procymide, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Potection, 89, 56-61. doi:10.1016/j.cropro.2013.02.012
dc.relationLópez, A., Vélez, M., Sánchez, M. S., Bonilla, C. R., & y Gallo, P. I. (2006). Evaluación de extractos vegetales para manejo de hongos patógenos en banano y fresa almacenados. Acta Agronómica, LV(4), 39-44. Obtenido de https://www.redalyc.org/articulo.oa?id=1699/169920333006
dc.relationMallampati, R., Xuanjun, L., Adin, A., & Valiyaveettil, S. (2015). Fruit Peels as Efficient Renewable Adsorbents for Removal of Dissolved Heavy Metals and Dyes from Water. ACS Sustainable Chemistry & Engineering, 3(6), 1117-1124. doi:10.1021/acssuschemeng.5b00207
dc.relationManzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., & Ansari, T. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb(II) and Cu(II) from aqueous media. Bioresource Technology, 132, 446-455. doi:10.1016/j.biortech.2013.01.156
dc.relationMartinez, A., Leal, R., Morales, H., Soleto, M., Parra, J., & Escudero, E. (2015). Situación actual en el control del Fusarium spp. y evaluación. Acta Agronomica, 64(2), 194-205. doi:10.15446/acag.v64n2.43358
dc.relationMasmoudi, F., Abdelmalek, N., Tounsi, S., Dunlap, C., & Trigui, M. (2019). Abiotic stress resistance, plant growth promotion nd antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiological Research, 229, 1-13. doi:10.1016/J.micre.2019126331
dc.relationMast, J., Verleysen, E., Hodoroaba, V. D., & Kaegi, R. (2020). Characterization of nanomaterials by transmission electron microscopy: Measurement procedures. En J. Mast, E. Verleysen, V. D. Hodoroaba, & R. Kaegi, Characterization of Nanoparticles (págs. 39-48). Micro and Nano Technologies. doi:10.1016/b978-0-12-814182-3.00004-3
dc.relationMcKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. En P. McKendry, Bioresource Technology (Vol. LXXXIII, págs. 37-46). Bioresource Technology. doi:10.1016/S0960-8524(01)00118-3
dc.relationMelgar, B., Dias, M., Ciric, A., Sokovic, M., García-Castello, E., Rodriguez-López, A., . . . Ferreira, I. (2018). Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. ScienceDirect, 111, 212-218. doi:101016./j.indcrop.2017.10.024
dc.relationMerkel, K., Rydarowski, H., Kazimierczak, J., & Bloda, A. (2014). Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibres isolated from waste plant biomass such as hemp. Composites Part B: Engineering, 67, 138-144. doi:10.1016/j.compositesb.2014.06.007
dc.relationMiao, L. L. (November 8-12). A specification based approach to testing polymorphic attributes. Formal Methods and Software Engineering: Proceedings of the 6th International Conference on Formal Engineering Methods, ICFEM 2004. Seattle, WA, USA,.
dc.relationMillen Pinedo, P. (2007). Estudo sobre a potencialidade da extracao de produtos naturais utilizando CO2 supercritico. UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO.
dc.relationMin, M., & Kyaw, P. (2018). Study on phytoconstituents and bioactiveproperties or avocado (Persea Americana Mill.) seeds. Myanmar Academy of arts on Science, 16(1), 11-23.
dc.relationMinisterio de la protección social. Ministerio de ambiente, vivienda y desarrollo territorial. (22 de Junio de 2007). Resolución 2115.
dc.relationMiretzky, P., Saralegui, A., & Cirelli, A. (2004). Aquatic Macrophytes Potential for the Simultaneous Removal of Heavy Metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997-1004. doi:10.1016/j.chemosphere.2004.07.024
dc.relationMondino, P. (2012). Métodos de inoculación. Facultad de agronomía. Obtenido de http://www.pv.fagro.edu.uy/fitopato/cursometodosfito/08-Metodos_inoculacion_Cuantif_inoculo.pdf
dc.relationMotato, K., Mejía, A., & León, A. (2006). Evaluación de los residuos agroindustriales del plátano (Musa Paradisiaca) y aserrín de abarcp (Cariniana Piriformes) como sustratos para el cultivo de hongo Pleurotus Djamor. Facultad de química Farmacéutica, 13(1), 24-59.
dc.relationMouejouba, L., Zhang, L., Guan, X., Chen, X., Chen, H., Zhang, J., . . . Wan, A. (2014). Analysis of clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves. PLOS ONE, 9(7), 1-15. doi:10.1317/Journal.pone.0102690
dc.relationMqehe-Nedzivhe, K., Makhado, K., Olorundare, O., Arotiba, O., Makhatha, E., Nomngongo, P., & Mabuba, N. (2018). Bio-adsorbents for the Removal of Heavy Metals from Water. En Arsenic: Analytical and Toxicological Studies (págs. 25-40). Londres: IntechOpen. doi:10.5772/intechopen.73570
dc.relationMuthuviveganandavel, V., Muthuraman, P., Muthu, S., & Srikumar, K. (2008). A study of low dose cypermethrin induced histopathology, lipid peroxidation and marker enzyme changes in male rat. Pesticide Biochemistry and Physiology, 91(1), 12-16. doi:10.1016/j.pestbp.2007.11.010
dc.relationNayak, J., Kimura, S., & Nozaki, S. (2009). Enhancement of the visible luminescence from the ZnO nanocrystals by Li and Al co-doping. Journal of Luminescence, 129(1), 12-16. doi:10.1016/j.jlumin.2008.07.005
dc.relationNing-chuan, F., & Xue-yi, G. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China, 22(5), 1224-1231. doi:10.1016/S1003-6326(11)61309-5
dc.relationNoriega-Treviño, M. E., Quintero González, C., Guajardo Pacheco, J., Morales Sánchez, J., Compeán Jasso, M., & Ruiz, F. (2012). Desinfección y purificación de agua mediante nanopartículas metálicas y membranas compósitas. Tecnología y Ciencias del Agua, III, 87-100. Obtenido de https://www.redalyc.org/pdf/3535/353531980006.pdf
dc.relationNwaoguikpe, R. N., Braide, W., & Ujowundu, C. (2011). Biochemical composition and antimicrobial activities of seed extracts of avocado (Persea Americana). Journal of Microbiology and Antimicrobials, 3(7), 184-190.
dc.relationOberlies, N., Rogers, L., Martin, J., & McLaughlin, J. (1998). Cytotoxic and Insecticidal Constituents of the Unripe Fruit of Persea americana. Journal of Natural Products, LXI(6), 781-785. doi:10.1021/np9800304
dc.relationOrganización de las Naciones Unidas. (2019). Población. Recuperado el 20 de Diciembre de 2019, de Población: https://www.un.org/es/sections/issues-depth/population/index.html
dc.relationOrganización Mundial de Salud. (Octubre de 2011). Departamento de Salud Pública, Medio Ambiente y Determinantes Sociales de la Salud. Obtenido de Departamento de Salud Pública, Medio Ambiente y Determinantes Sociales de la Salud: https://www.who.int/phe/chemicals/faq_mercury_health/es/
dc.relationOrtiz, A., Dorantes, L., Galindez, J., & Guzman, R. (2003). Effect of Different Extraction Methods on Fatty Acids, Volatile Compounds, and Physical and Chemical Properties of Avocado (Persea americana Mill.) Oil. Journal of Agricultural and Food Chemistry., 51(8), 2216-2221. doi:10.1021/jf0207934
dc.relationPacheco Tanaka, M. E., Pimentel Frisancho, J. P., & Roque Villanueva, W. F. (2010). Cinética de la bioadsorción de iones cadmio (II) y plomo (II) de soluciones acuosas por biomasa residual de café (Coffea arabica L.). Revista de la Sociedad Química del Perú, 76(3).
dc.relationPaleologos, E., & Onsy, A. (2017). Emerging Pollutants: Fate, Pathways, and Bioavailability. En E. Paleologos, & A. Onsy, Fundamentals of Geoenvironmental Engineering (págs. 327-358). Abu Dhabi University. doi:10.1016/B978-0-12-804830-6.00010-7
dc.relationPandey, A., & Negi, S. (2015). Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresource Technology, 192, 115-125. doi:10.1016/j.biortech.2015.04.054
dc.relationPandey, A., & Negi, S. (2015). Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresource Technology, 192, 115-125. doi:10.1016/j.biortech.2015.04.054
dc.relationPehlivan, E., Altun, T., & Parlayici, Ş. (2012). Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry, 135(4), 2229-2234. doi:10.1016/j.foodchem.2012.07.017
dc.relationPereira Fagundes, M. C., Francisco de Oliveira, A., Luiz de Carvalho, V., Darlan Ramos, J., Andrade dos Santos, V., & Moraes Rufini, J. C. (2018). Alternative Control of Plant Pathogen Fungi Through Ethanolic Extracts of Avocado Seeds (Persea Americana Mill.). AGRICULTURE, AGRIBUSINESS AND BIOTECHNOLOGY, 61}. doi:10.1590/1678-4324-2018180052
dc.relationPérez, S., Ávila, G., & Coto , O. (2015). Review: AVOCADO (Persea americana Mill). Cultivos tropicales, XXXVI(2), 111-123. doi:10.13140/RG.2.2.19879.55200
dc.relationPetrovic, M., Díaz, A., Ventura, F., & Barceló, D. (2003). Occurrence and removal of strogenic short-chain ethoxy nonylphenolic compound and their halogenated derivatives during drinking water production. Enviromental Science & Technology, 36(1), 4442-4448. doi:10.1021/es034139w
dc.relationPuziy, A., Poddubnaya, O., Martı́nez-Alonso, A., Suárez-Garcı́a, F., & Tascón, J. (2002). Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon, 40(9), 1493-1505. doi:10.1016/S0008-6223(01)00317-7
dc.relationRestrepo Salazar, J., Sánchez López, R., Gallego Beltrán, J., Beltrán Ospina, T., Soto Rave, C., Nieto Solórzano , F., & Leiva, L. (2011). Manejo fitosanitario del cultivo del mora (Rubus glaucus Benth) Medidas para la temporada invernal. ICA, 1-32. Obtenido de https://repository.agrosavia.co/bitstream/handle/20.500.12324/2279/45171_61369.pdf?sequence=1&isAllowed=y
dc.relationReyes, Y., Vergara, I., Torres, O., Díaz, M., & González, E. (2016). Contaminación por metales pesados: implicaciones en salud, ambiente y seguridad alimentaria. Ingeniería, investigación y desarrollo, 16(2), 66-77. doi:10.19053/1900771X.v16.n2.2016.5447
dc.relationRico, M. (2011). Espectroscopía de Resonancia Magnética Nuclear de alta resolución: una herramienta fundamental en Química y Biología Estructural. Real Sociedad Española de Química, 46-57.
dc.relationRizwana, H., Olyan, F., Ibrahim, R., Albasher, G., & Alqusimi, R. (2021). Morphology and Ultrastructure of Some Pathogenic Fungi Altered by Leaf Extracts of Senna Alexandrina Mill. Pakistan Journal of Agricultural Sciences, 58(1), 389-408. doi:10.21162/PAKJAS/21.9789
dc.relationRomanazzi, G., & Feliziani, E. (2014). Botrytis cinerea (Gray Mold). En G. Romanazzi, & E. Feliziani, Postharvest Decay (págs. 131-146). Ancona: Department of Agricultural, Food, and Environmental Sciences. doi:10.1016/B978-0-12-411552-1.00004-1
dc.relationRomdhane, M., & Gourdon, C. (2002). Investigation in solid–liquid extraction: influence of ultrasound. Chemical Engineering Journal, 87(1), 11-19. doi:10.1016/S1385-8947(01)00206-6
dc.relationSáez, A., & Urdaneta, J. (2014). Manejo de residuos sólidos en América Latina y el Caribe. Redalyc, XX(3), 121-135. doi:Manejo de residuos sólidos en América Latina
dc.relationSandoval, G. (2006). Aproximación teórica a la biosorción de metales pesados por medio de microorganismos. CES Medicina Veterinaria y Zootecnia, I(1), 77-99. Obtenido de https://www.redalyc.org/pdf/3214/321428096010.pdf
dc.relationSandoval, S. (2010). Guía Técnica: Validación de métodos y determinación de la incertidumbre.
dc.relationSarmierto, M. (1999). Evaluación del Impacto de la Contaminación del Embalse del Muña Sobre la Salud Humana. Revista de salud pública, 1(2), 159-171.
dc.relationScora, R., & Ahmed, M. (1993). Terpenes of Persea tolimanensis (Lauraceae), an ancestor of the Guatemalan avocados. Journal of Agricultural and Food Chemistry, 41(11), 1971-1973. doi:10.1021/jf00035a029
dc.relationScora, R., & Scora, P. (2000). Essential Oils of Persea subgenus Persea (Lauraceae). Journal of Essential Oil Research, 16(6), 709-713. doi:10.1080/10412905.2000.9712197
dc.relationSeymour, R., & Carraher, C. (2002). Introducción a la química de los polímetros (Segunda ed.). Barcelona: Reverté.
dc.relationSilverstein, R., Webster, F., & Kiemle, D. (2005). Identification of organic compounds (VII ed.). JOHN WILEY & SONS, INC.
dc.relationSima, F., Ristoscu, C., Duta, L., Gallet, O., Anselme, K., & Mihailescu, I. (2016). Laser thin films deposition and characterization for biomedical applications. En F. Sima, C. Ristoscu, L. Duta, O. Gallet, K. Anselme, & I. Mihailescu, Laser Surface Modification of Biomaterials (págs. 77-125). Ilfov: National Institute for Lasers, Plasma and Radiation Physics. doi:10.1016/C2014-0-01731-5
dc.relationSmic, A., Sokovic, M., Ristic, M., Grujic-Javanovia, S., Vokojevic, J., & Marin, P. (2004). The chemical composition of some Lauranceae essentian oils and their antigungal activities. Phytotherapy Research, 18(9), 713-171. doi:10.1002/ptr.1516
dc.relationSole, A. C. (2006). Instrumentación Industrial. Mexico: Alfaomega.
dc.relationSoto-García, M., & Rosales-Castro, M. (2016). Efecto del solvente y de la relación masa/solvente, sobre la extracción de compuestos fenólicos y la capacidad antioxidante de extractos de corteza de Pinus durangensis y Quercus sideroxyla. Maderas, ciencia y tecnología, 18(4), 701-714. doi:10.4067/S0718-221X2016005000061
dc.relationSteele, P., Pittman, C., & Mohan , D. (2006). Pyrolysis of wood/biomass for bio‐oil: a critical review. Energy & Fuels, 20(3), 848-889. doi:10.1021/ef0502397
dc.relationTaborda Andrade, L., Sánchez Orozco, M., Bonilla Correa, C., & Huertas Davey, C. (2015). Efecto fungistático de extractos y aceites esenciales de Lippia origanoides HBK y Thymus vulgaris L. como alternativas de manejo de Botrytis cinerea en fresa. Acta Agronómica, 64(1). doi:10.15446/acag.v64n1.35773
dc.relationTang, C., & Yang, Z. (2017). Transmission Electron Microscopy (TEM). En C. Tang, & Z. Yang, Membrane Characterization (págs. 145-159). Elsevier. doi:https://doi.org/10.1016/B978-0-444-63776-5.00008-5
dc.relationTeja, A., & Koh, Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. School of Chemical & Biomolecular Engineering, 55(1-2), 422-445. doi:10.1016/j.pcrysgrow.2008.08.003.
dc.relationTejada, C., Villabona, A., & Ruiz, E. (2014). Remoción de Pb (II), Ni (II) y Cr (VI) en soluciones acuosas usando matrices modificadas químicamente. Prospectiva, 12(2), 7-17. doi:10.15665/rp.v12i2.265
dc.relationTorab-Mostaedi, M., Ghassabzadeh, H., Ghannadi-Maragheh, M., Ahmadi, S., & Taheri, H. (2010). Removal of cadmium and nickel from aqueous solution using expanded perlite. Brazilian Journal of Chemical Engineering , 27(2), 299-308. doi:10.1590/S0104-66322010000200008
dc.relationTorrenegra, M., Pájaro, N., & León, G. (2017). Actividad antibacteriana in vitro de aceites esenciales de diferentes especies del género Citrus. Revista Colombiana de Ciencias Quimico-Farmaceuticas, 46(2), 160-175. doi:10.15446/rcciquifa.v46n2.67934
dc.relationVázquez, A., & De Damborenea, J. (2000). Ciencia e ingeniería de la superficie de los materiales metálicos. Madrid: Consejo Superior de Investigaciones Científicas.
dc.relationVijayaraghavan, K., & Yun, Y. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266-291. doi:10.1016 / j.biotechadv.2008.02.002
dc.relationWang, X., Li, D., Li, W., Peng, J., Xia, H., Zhang, L., . . . Chen, G. (2013). Optimization of Mesoporous Activated Carbon from Coconut Shells by Chemical Activation with Phosphoric Acid. Bioresources, 8(4), 6184-6195. doi:10.15376 / biores.8.4.6184-6195
dc.relationWeininge, S., & Stermitz, F. (1988). Química orgánica. Barcelona: Reverté S.A.
dc.relationWeyerstahl, P., Marschall, H., & Scora, R. (1993). Constituents of the leaf essential oil of Persea indica (L.) K. Spreng. Flavour and Fragance Journal, 8(4), 201-207. doi:10.1002/ffj.2730080407
dc.relationWigner, E. P. (2005). Theory of traveling wave optical laser . Phys. Rev., 134, A635-A646.
dc.relationWilson , C., Solar, J., El Ghaouth, A., & Wisniewski, M. (1997). Rapid Evaluation of Plant Extracts and Essential Oils for Antifungal Activity Against Botrytis cinerea. Plant Disease, 81(2), 204-210. doi:10.1094 / PDIS.1997.81.2.204
dc.relationWitek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265(1-3), 126-134. doi:10.1016/j.desal.2010.07.042
dc.relationWyman, C., Dale, B., Elander, R., Holtzapple, M., Ladisch, M., & Lee, Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959-1966. doi:10.1016/j.biortech.2005.01.010
dc.rightsAcceso cerrado
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleAprovechamiento de biomasa lignocelulósica de semilla de aguacate (Persea Americana Mill): evaluación de la capacidad fungistática y adsorción de metales pesados en solución acuosa


Este ítem pertenece a la siguiente institución