dc.contributorCamacho Poveda, Edgar Camilo
dc.contributorGelvez Lizarazo, Oscar Mauricio
dc.contributorhttps://orcid.org/0000-0002-6084-2512
dc.contributorhttps://orcid.org/0000-0001-6858-5293
dc.contributorhttps://scholar.google.es/citations?user=tJG988kAAAAJ&hl=es
dc.contributorhttps://scholar.google.es/citations?user=NWM0F0AAAAAJ&hl=es
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001342623
dc.contributorUniversidad Santo Tomas
dc.contributorUniversidad Santo Tomás
dc.creatorForero Gallego, Stefhannya Maria Josse
dc.creatorTorres Laguado, Juan Sebastian
dc.date.accessioned2021-03-25T14:36:17Z
dc.date.available2021-03-25T14:36:17Z
dc.date.created2021-03-25T14:36:17Z
dc.date.issued2021-03-24
dc.identifierForero Gallego, S. M. J. & Torres Laguado, J. S. (2021). Implementación de un sistema de posicionamiento en interiores para robots móviles. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifierhttp://hdl.handle.net/11634/33179
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe purpose of this project is to select a suitable technology for the implementation of an indoor positioning system. For this, a review of the state of the art was carried out, where Wi-Fi, Bluetooth low energy and ultrasound technologies were highlighted. Later, more detailed investigations of these works were made, to deduce which would be the most appropriate, taking into account tests and final results. In this way, ultrasound was selected mainly for achieving errors in the order of centimeters and also for its ease in capturing and processing the signal. Additionally, radio waves were chosen to be taken as a reference, for estimating the relative distance between nodes. For the hardware of the system, six nodes were implemented, a transmitter node to send an ultrasound signal and a radio frequency signal, four receiver nodes to receive both signals, calculate the time difference between these two, then estimate their respective distance and send it to an end node. This final node is made up of a computer and the coordinating Xbee module. This node receives the four corresponding distances and subsequently estimates the final position of the mobile node in third dimension. To obtain the relative position with respect to the system, it was necessary to use the linearization positioning technique with spherical trilateration. It should be mentioned that in this case there were singularities in the nodes of the system, because they are nodes that are in the same plane. These singularities were solved by applying the singular value decomposition in the system of equations.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationJ. Haverinen, The Rise of Indoor Positioning, 2016. [Online]. Available: http://www.indooratlas.com/wp-content/uploads/2016/09/A-2016-Global-Research-Report-On-The-Indoor-Positioning-Market.pdf
dc.relationD. Capriglione, D. Casinelli and L. Ferrigno, Use of frequency diversity to improve the performance of RSSI-based distance measurements,2015 IEEE International Workshop on Measurements Networking (M\N), Coimbra, 2015, pp. 1-6, doi: 10.1109/IWMN.2015.7322973.
dc.relationBaturone Ollero Anibal and Gonzalez Jimenez Javier; Estimación De La Posición De Un Robot Móvil. 1996.
dc.relationF. Seco Granja et al, Localización personal en entornos interiores con tecnología RFID, vol. 10, (3), pp. 313-324, 2013. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::ec4f8c5 40c163506a5bfcd719b9b51d7. DOI: 10.1016/j.riai.2013.05.004.
dc.relationR. F. Brena et al, Evolution of Indoor Positioning Technologies: A Survey, Journal of Sensors, 2017. Available: https://www.hindawi.com/journals/js/2017/2630413. DOI: 10.1155/2017/2630413.
dc.relationW. Sakpere, M. Adeyeye-Oshin and N. B.W.Mlitwa, View of A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies, South African Computer Journal, 2017. [Online]. Available: https://sacj.cs.uct.ac.za/index.php/sacj/article/download/452/249.
dc.relationG. Deak, K. Curran and J. Condell, A survey of active and passive indoor localisation systems, Computer Communications, vol. 35, (16), pp. 1939-1954, 2012. Available: https://www.sciencedirect.com/science/article/pii/S014036641200196X. DOI:10.1016/j.comcom.2012.06.004.
dc.relationZ. Farid, R. Nordin and M. Ismail, Recent Advances in Wireless Indoor Localization Techniques and System, Journal of Computer Networks and Communications, 2013. [Online]. Available: https://www.hindawi.com/journals/jcnc/2013/185138/. DOI: 10.1155/2013/185138.
dc.relationY. Wang, Q. Yang, G. Zhang and P. Zhang, Indoor positioning system using Euclidean distance correction algorithm with bluetooth low energy beacon, 2016 International Conference on Internet of Things and Applications (IOTA), Pune, 2016, pp. 243-247, doi: 10.1109/IOTA.2016.7562730.
dc.relationZ. Cao, R. Chen, G. Guo and Y. Pan, iBaby: A low cost BLE pseudolite based indoor baby care system, 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, 2018, pp. 1-6, doi: 10.1109/UPINLBS.2018.8559887.
dc.relationS. Memon, M. M. Memon, F. K. Shaikh and S. Laghari, Smart indoor positioning using BLE technology, 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS), Salmabad, 2017, pp. 1-5, doi: 10.1109/ICETAS.2017.8277872.
dc.relationA. Corbacho Salas, Indoor Positioning System based on Bluetooth Low Energy, UPC, Escuela Técnica Superior de ingeniería de Telecomunicaciones de Barcelona, 2014.
dc.relationChai, Song & An, Renbo & Du, Zhengzhong. An Indoor Positioning Algorithm using Bluetooth Low Energy RSSI. 2016, 10.2991/amsee-16.2016.72.
dc.relationS. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.
dc.relationH. Zou, Ming Jin, H. Jiang, L. Xie and C. Spanos, WinIPS: WiFi-based non-intrusive IPS for online radio map construction, 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, 2016, pp. 1081-1082, doi: 10.1109/INFCOMW.2016.7562263.
dc.relationP. Bolliger, Robust Indoor Positioning through Adaptive Collaborative Labeling of Location Fingerprints, ETH Zurich, 2011. [Online]. Available: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/72799/eth-5267-02.pdf.
dc.relationJ. Xiao, K. Wu, Y. Yi and L. M. Ni, FIFS: Fine-Grained Indoor Fingerprinting System, 2012 21st International Conference on Computer Communications and Networks (ICCCN), Munich, 2012, pp. 1-7, doi: 10.1109/ICCCN.2012.6289200
dc.relationNguyen Dinh-Van, F. Nashashibi, Nguyen Thanh-Huong and E. Castelli, Indoor Intelligent Vehicle localization using WiFi received signal strength indicator, 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, 2017, pp. 33-36, doi: 10.1109/ICMIM.2017.7918849.
dc.relationNissanka Bodhi Priyantha,The Cricket Indoor Location System. 2005.
dc.relationMedina, Carlos et al. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy. Sensors (Basel, Switzerland) vol. 13,3. 2013, doi:10.3390/s130303501
dc.relationM. Addlesee et al., Implementing a sentient computing system, in Computer, vol. 34, no. 8, pp. 50-56, Aug. 2001, doi: 10.1109/2.940013.
dc.relationJ. Eckert, F. Dressler and R. German, Real-time indoor localization support for four-rotor flying robots using sensor nodes, 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, 2009, pp. 23-28, doi: 10.1109/ROSE.2009.5355994.
dc.relationS. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.
dc.relationS. Latif, R. Tariq, W. Haq and U. Hashmi, INDOOR POSITIONING SYSTEM using ultrasonics, Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, 2012, pp. 440-444, doi: 10.1109/IBCAST.2012.6177596.
dc.relationSistema de localización en tiempo real WhereNet, Zebra Technologies. [Online]. Available: https://www.zebra.com/la/es/products/location-technologies/wherenet.html.
dc.relationJ. Liu, S. Chen, M. Chen, Q. Xiao and L. Chen, Pose Sensing With a Single RFID Tag, in IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2023-2036, Oct. 2020, doi: 10.1109/TNET.2020.3007830.
dc.relationA. Harter and A. Hopper, A distributed location system for the active office, IEEE Network, vol. 8, (1), pp. 62-70, 1994. DOI: 10.1109/65.260080.
dc.relationFirefly by Cybernet Systems Corporation. [Online]. Available: https://www.cybernet.com/interactive/firefly/.
dc.relationE. Bernardes, S. Viollet and T. Raharijaona, A Three-Photo-Detector Optical Sensor Accurately Localizes a Mobile Robot Indoors by Using Two Infrared Light-Emitting Diodes, in IEEE Access, vol. 8, pp. 87490-87503, 2020, doi: 10.1109/ACCESS.2020.2992996.
dc.relationBarry Brumitt, Brian Meyers, John Krumm, Amanda Kern, Steven Shafer, EasyLiving: Technologies for intelligent environments, September. 2000.
dc.relationY. Gu, A. Lo and I. Niemegeers, A survey of indoor positioning systems for wireless personal networks, in IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 13-32, First Quarter 2009, doi: 10.1109/SURV.2009.090103.
dc.relationRohta, J., Perumal, B., Narayanan, S., Tharkur, P. and B, R. User Localization In An Indoor Environment Using Fuzzy Hybrid Of Particle Swarm Optimization And Gravitational Search Algorithm With Neural Networks. 2014. VIT University.
dc.relationAdege, A., Lin, H., Tarekegn, G., Munaye, Y. and Yen, L. An Indoor And Outdoor Positioning Using A Hybrid Of Support Vector Machine And Deep Neural Network Algorithms. 2018 .National Taipei University of Technology.
dc.relationP. Mohaghegh, D. Pravica, J. S. Botero-Valencia, A. Boegli and Y. Perriard, Application of a Low Frequency, Low Power Radio Frequency Positioning System for Real Time Indoor Positioning, 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 2020, pp. 406-410, doi: 10.23919/ICEMS50442.2020.9291201.
dc.relationZ. Chen, M. I. AlHajri, M. Wu, N. T. Ali and R. M. Shubair, A Novel Real-Time Deep Learning Approach for Indoor Localization Based on RF Environment Identification, in IEEE Sensors Letters, vol. 4, no. 6, pp. 1-4, June 2020, Art no. 7002504, doi: 10.1109/LSENS.2020.2991145.
dc.relationH. Liu et al, Survey of wireless indoor positioning techniques and systems, IEEE Trans Syst Man Cybern Pt C Appl Rev, vol. 37, (6), pp. 1067-1080, 2007. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-36248934122doi=10.1109\%2fTSMCC.2007.905750partnerID=40;md5=24 54644b18133a464502dfc82efbb147. DOI: 10.1109/TSMCC.2007.905750.
dc.relationOgata Katsuhiko, Modern Control Engineering, Fifth Edition. Editorial Pearson.
dc.relationData Fusion For Improved TOA/TDOA Position Determination in Wireless Systems, VTechWorks, 2000. [Online]. Available: https://vtechworks.lib.vt.edu/bitstream/handle/10919/34723/Master4.pdf?sequen ce=1&isAllowed=y.
dc.relationR. Kaune, Accuracy studies for TDOA and TOA localization, 2012 15th International Conference on Information Fusion, Singapore, 2012, pp. 408-415.
dc.relationF. Zafari, A. Gkelias and K. K. Leung, A Survey of Indoor Localization Systems and Technologies, in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568-2599, thirdquarter 2019, doi: 10.1109/COMST.2019.2911558.
dc.relationC. Yang and H. Shao,WiFi-based indoor positioning, IEEE Communications Magazine, vol. 53, (3), pp. 150-157, 2015. DOI: 10.1109/MCOM.2015.7060497.
dc.relationF. Abdelhafeid and R. Penno, AoA Estimation Using an Array of Diversely Polarized Microstrip Antenna, NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, 2018, pp. 611-617, doi: 10.1109/NAECON.2018.8556805.
dc.relationG. Cullen, K. Curran, J. Santos, G. Maguire and D. Bourne, CAPTURE Cooperatively applied positioning techniques utilizing range extensions, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, 2014, pp. 340-346, doi: 10.1109/IPIN.2014.7275501.
dc.relationKaibi Zhang, Yangchuan Zhang and Subo Wan, Research of RSSI indoor ranging algorithm based on Gaussian - Kalman linear filtering, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 1628-1632, doi: 10.1109/IMCEC.2016.7867493.
dc.relationA. F. G. Ferreira et al, Localization and Positioning Systems for Emergency Responders: A Survey, IEEE Communications Surveys Tutorials, vol. 19, (4), pp. 2836-2870, 2017. DOI: 10.1109/COMST.2017.2703620
dc.relationE. García Polo, Técnicas de Localización en Redes Inalámbricas de Sensores, Departamento de Sistemas Informáticos (DSI). [Online]. Available:http://www.dsi.uclm.es/personal/EvaMariaGarcia/docs/2008-Curso%20Verano.pdf
dc.relationA. Noertjahyana, I. A. Wijayanto and J. Andjarwirawan, Development of Mobile Indoor Positioning System Application Using Android and Bluetooth Low Energy with Trilateration Method, 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), Denpasar, 2017, pp. 185-189, doi: 10.1109/ICSIIT.2017.64.
dc.relationE. Tudanca Capón, Estudio de un sistema de posicionamiento 3D de drones, 2019. [Online]. Available: http://hdl.handle.net/10017/39107.
dc.relationN. Alsindi, Z. Chaloupka and J. Aweya, Entropy-based location fingerprinting for WLAN systems, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-7, doi: 10.1109/IPIN.2012.6418895.
dc.relationRadio Versions Bluetooth Technology Website, Bluetooth Technology Website. [Online]. Available: https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/.
dc.relationM. Ji, J. Kim, J. Jeon and Y. Cho, Analysis of positioning accuracy corresponding to the number of BLE beacons in indoor positioning system, 2015 17th International Conference on Advanced Communication Technology (ICACT), Seoul, 2015, pp. 92-95, doi: 10.1109/ICACT.2015.7224764.
dc.relationH. Torii, S. Ibi and S. Sampei, Indoor Positioning and Tracking by Multi-Point Observations of BLE Beacon Signal, 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, 2018, pp. 1-5, doi: 10.1109/WPNC.2018.8555808.
dc.relationS. Subedi, G. Kwon, Seokjoo Shin, Suk-seung Hwang and Jae-Young Pyun, Beacon based indoor positioning system using weighted centroid localization approach, 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, 2016, pp. 1016-1019, doi: 10.1109/ICUFN.2016.7536951.
dc.relationRoss, John. Book of Wireless : A Painless Guide to Wi-Fi and Broadband Wireless, No Starch Press, Incorporated, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/bibliotecausta-ebooks/detail.action?docID=1137524.
dc.relationH. X. Jian and W. Hao, WIFI Indoor Location Optimization Method Based on Position Fingerprint Algorithm, 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA), Changsha, 2017, pp. 585-588, doi: 10.1109/ICSGEA.2017.123.
dc.relationF. Davila, L. Barros, J. Reynolds, A. Lewis and I. Mogollón, El ultrasonido: desde el murciélago hasta la cardiología no invasivaUltrasound: from bats to non-invasive cardiology, sciencedirect, 2016, doi: 10.1016/j.rccar.2016.05.010
dc.relationultrasonido Diccionario de la lengua española, Diccionario de la lengua española - Edición del Tricentenario. [Online]. Available: https://dle.rae.es/ultrasonido?m=30_2.
dc.relationResonancia en columnas de aire, Universidad Católica del Norte. [Online]. Available: http://www.fisica.ucn.cl/wp-content/uploads/2017/09/GL6-RESONANCIA-EN-COLUMNAS-DE-AIRE.pdf.
dc.relationA. Vargas, L. Amescua-Guerra, M. Bernal and C. Pineda, Principios físicos básicos del ultrasonido, sonoanatomía del sistema musculoesquelético y artefactos ecográficos, 2008. [Online]. Available: https://www.medigraphic.com/pdfs/ortope/or-2008/or086e.pdf.
dc.relationJ. Sáez Cardador, Medidor de distancia por ultrasonidos, Universidad Carlos III de Madrid, 2006. [Online]. Available: http://hdl.handle.net/10016/9052.
dc.relationPIC12F509 Data Sheet. 2004. [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/105920/MICROCHIP/PIC12F5-09.html
dc.relation433 MHz RF Receiver Module, Components101, 2018. [Online]. Available: https://components101.com/433-mhz-rf-receiver-module.
dc.relationARM Cortex M3 STM32F103C8T6, microcontrollerelectronics. [Online]. Available: https://microcontrollerelectronics.com/arm-cortex-m3-stm32f103c8t6/
dc.relationTarjeta de Desarrollo STM32F103C8T6 ARM Cortex-M3 STM32, electronilab. [Online]. Available: https://electronilab.co/tienda/tarjeta-de-desarollo-stm32f103c8t6-arm-cortex-m3-stm32/.
dc.relation¿Qué es XBee? XBee.cl - Comunicación Inalámbrica para Tus Proyectos, DIGI. [Online]. Available: https://xbee.cl/que-es-xbee/.
dc.relationDIGI XBee, mouser. [Online]. Available: https://www.mouser.es/new/digi-international/digi-xbee-s2c-rf-modules/
dc.relationC. Rimoldi and L. Mundo, ENSAYO NO DESTRUCTIVO POR MÉTODO DE ULTRASONIDO. [Online]. Available: http://www.aero.ing.unlp.edu.ar/catedras/archivos/Apunte%20Ultrasonido%202012.pdf
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleImplementación de un sistema de posicionamiento en interiores para robots móviles


Este ítem pertenece a la siguiente institución