dc.contributorhttps://orcid.org/0000-0003-4376-5938
dc.contributorhttps://scholar.google.es/citations?user=5SV5mE8AAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000914177
dc.creatorOrjuela, David
dc.creatorBetancourt, Daylin
dc.creatorSolano Meza, Johanna Karina
dc.date.accessioned2020-05-18T22:59:18Z
dc.date.accessioned2022-09-28T14:57:30Z
dc.date.available2020-05-18T22:59:18Z
dc.date.available2022-09-28T14:57:30Z
dc.date.created2020-05-18T22:59:18Z
dc.date.issued2020-03-18
dc.identifierSolano J.K., Orjuela D., Betancourt D., 2019, Stress-strain Curve Analysis for the Mixture of Expanded Polystyrene and Polypropylene Plastic Waste, Chemical Engineering Transactions, 74, 1183-1188 DOI:10.3303/CET1974198
dc.identifierhttp://hdl.handle.net/11634/23270
dc.identifierhttps://doi.org/10.3303/CET1974198
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3667401
dc.description.abstractThe environmental problem related to urban solid waste generation and management requires alternatives that enable communities to have appropriate collection, transport and disposal methods for urban solid waste. Likewise, it is necessary to develop alternative uses as many of the materials generated can be reused or recycled. Plastic waste is among the types of waste most generated by communities, making up approximately 11 % of waste in middle income countries, some of which possess high commercial value and is easy to recover and recycle, while others are more complicated due to their volume-to-weight ratio. This is the case of expanded polystyrene, which has a low commercial value and few reuse alternatives, making it an unattractive type of waste for the recycling chain, and as a result, while being 100 % recyclable, it still ends up in municipal landfills. In order to facilitate the use of this waste, this paper presents a stress-strain curve analysis for the mixture of expanded polystyrene (EPS) and polypropylene (PP), both recovered wastes, for the purpose of contributing to the physical-mechanical characterization of this mixture to develop future research projects to reincorporate this material in the recycling chain.
dc.relationBabu, D. S., Babu, K. G., & Tiong-Huan, W. (2006). Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. Cement and Concrete Composites, 28(6), 520- 527.
dc.relationBajracharya, R. M., Manalo, A. C., Karunasena, W., & Lau, K. tak. 2016. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation. Waste Management, 48, 72–80. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005
dc.relationBetancourt, S., Julieth, D., Solano, M., & Karina, J. 2016. Síntesis y caracterización de la mezcla polipropileno-poliestireno expandido (icopor) reciclado como alternativa para el proceso de producción de autopartes. Luna Azul, (43), 286-310. DOI: http://dx.doi.org/10.17151/luaz.2016.43.13.
dc.relationChen, B., & Liu, J. (2004). Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cement and Concrete Research, 34(6), 1065-1069
dc.relationFerrándiz-Mas, V., Bond, T., García-Alcocel, E., & Cheeseman, C. R. (2014). Lightweight mortars containing expanded polystyrene and paper sludge ash. Construction and Building Materials, 61, 285-292.
dc.relationGu, L., & Ozbakkaloglu, T. 2016. Use of recycled plastics in concrete : A critical review. Waste Management, 51, 19–42. DOI: https://doi.org/10.1016/j.wasman.2016.03.005
dc.relationHaghi, A. K., Arabani, M., & Ahmadi, H. (2006). Applications of expanded polystyrene (EPS) beads and polyamide-66 in civil engineering, Part One: Lightweight polymeric concrete. Composite Interfaces, 13(4- 6), 441-450.
dc.relationLaukaitis, A., Žurauskas, R., & Kerien, J. (2005). The effect of foam polystyrene granules on cement composite properties. Cement and Concrete Composites, 27(1), 41-47
dc.relationMaldonado, A. T. 2012. La complejidad de la problemática ambiental de los residuos plásticos : Una aproximación al análisis narrativo de política pública en Bogotá. Magister en Medio Ambiente y Desarrollo. Universidad Nacional de Colombia, Facultad de Ciencias Económicas, Instituto de Estudios AmbientalesIDEA . Bogotá, Colombia
dc.relationMadandoust, R., Ranjbar, M. M., & Mousavi, S. Y. (2011). An investigation on the fresh properties of selfcompacted lightweight concrete containing expanded polystyrene. Construction and Building Materials, 25(9), 3721-3731.
dc.relationMarek, A. A., Zawadiak, J., Piotrowski, T., &Hefczyc, B. 2015. A new efficient method for the processing of post-consumer polypropylene and other polyolefin wastes into polar waxes. Waste Management, 46, 62– 67. DOI: https://doi.org/10.1016/j.wasman.2015.08.042
dc.relationPoletto, M., Dettenborn, J., Zeni, M., & Zattera, A. J. (2011). Characterization of composites based on expanded polystyrene wastes and wood flour. Waste Management, 31(4), 779-784.
dc.relationPoletto, M., Zeni, M., & Zattera, A. J. (2012). Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. Journal of Thermoplastic Composite Materials, 25(7), 821-833
dc.relationRagaert, K., Delva, L., &Geem, K. Van. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Management. DOI: https://doi.org/10.1016/j.wasman.2017.07.044
dc.relationRavindrarajah, R. S. (1999). Bearing strength of concrete containing polystyrene aggregate. In Proc. the RILEM 8th Int Conf Durability of Building Materials and Components, Vancouver, Canada (Vol. 1, pp. 505- 514).
dc.relationSabaa, B., & Ravindrarajah, R. S. (1997, December). Engineering properties of lightweight concrete containing crushed expanded polystyrene waste. In Proceedings of the Symposium MM: Advances in Materials for Cementitious Composites, Boston, MA, USA (pp. 1-3).
dc.relationSingh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. 2017. Recycling of plastic solid waste : A state of art review and future applications. CompositesPart B, 115, 409–422. DOI: https://doi.org/10.1016/j.compositesb.2016.09.013
dc.relationSolano J.K.M., Orjuela D.Y., Betancourt D.J.S. 2017. Determination and evaluation of flexural strength and impact, flammability and creep test through dma, (dynamic mechanical analysis) for mixing expanded polystyrene and polypropylene from municipal solid waste, Chemical Engineering Transactions, 57, 1339- 1344 DOI: 10.3303/CET1757224
dc.relationTang, W. C., Lo, Y., & Nadeem, A. B. I. D. (2008). Mechanical and drying shrinkage properties of structuralgraded polystyrene aggregate concrete. Cement and Concrete Composites, 30(5), 403-409.
dc.relationTurku, I., Keskisaari, A., Kärki, T., Puurtinen, A., &Marttila, P. 2017. Characterization of wood plastic composites manufactured from recycled plastic blends. Composite Structures, 161, 469–476. DOI: https://doi.org/10.1016/j.compstruct.2016.11.073
dc.relationWang, R., & Meyer, C. (2012). Performance of cement mortar made with recycled high impact polystyrene. Cement and Concrete Composites, 34(9), 975-981.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleStress-strain curve analysis for the mixture of expanded polystyrene and polypropylene plastic waste
dc.typeApropiación Social y Circulación del Conocimiento: Edición de revista o libro de divulgación científica


Este ítem pertenece a la siguiente institución