Colombia |
dc.contributorCalderón Chavez, Juan Manuel
dc.contributorhttps://orcid.org/ 0000-0002-6204-8398
dc.contributorUniversidad Santo Tomás
dc.creatorSalazar Molina, Sergio Mauricio
dc.creatorPinto Cáceres, William Andrés
dc.date.accessioned2022-07-21T22:08:45Z
dc.date.available2022-07-21T22:08:45Z
dc.date.created2022-07-21T22:08:45Z
dc.date.issued2022-07-06
dc.identifierSalazar Molina, S. M. y Pinto Cáceres, W. A. (2022). Modelado de un algoritmo para la identificación de problemas jurídicos y tesis en las providencias de la sección primera del consejo de estado usando técnicas de procesamiento de lenguaje natural. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.
dc.identifierhttp://hdl.handle.net/11634/45997
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe Council of State is the closing body and the highest Court of Administrative Litigation in Colombia. In the development of their functions, the directors make decisions called orders, sentences or concepts. Once their decisions are firm, they are sent to the corporation's rapporteurship for analysis, standardization, titling and systematization. In this way they are available to the public for consultation. The titling work requires a work team, in charge of including in the system the general data of the orders, labeling them through keywords (descriptors and restrictors), extracting the thesis and the aspects that they consider relevant for the proper classification and subsequent decision consultation. This project was divided into two stages. In the first stage, it seeks to reduce the mechanical work of standardizing the information embodied in the different documents (providence, orders, rulings) that the rapporteurs advance, through the use of Machine Learning techniques, since Artificial Intelligence (AI ), these data can be extracted automatically and in shorter periods of time than those used by the rapporteurs. This will allow the Rapporteurship team to carry out the legal tasks of their position, that is, the analysis and study of the corporation's decisions. In the Logical Framework approach, the central problem of the research lies in the difficulty of consulting the material of the Rapporteurship of the Council of State, due to the variety of terms and writing styles in which these documents are generated and stored. . Given the circumstances, the execution of a system to automate the certification process of the rapporteurships will facilitate public access to the documentation of the Council of State, through the classification and standardization of documents. In the second stage, the aim is to automate part of the process of identification and extraction of the theses and the legal problems of the sentences of the First Section of the Council of State. This work is proposed by means of an Intelligent System (IS) based on Natural Language Processing (NLP) for the analysis and interpretation of sentences, which facilitates, in an effective and efficient way, the understanding and automatic extraction of the Legal Problem and the Thesis.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationAmory Reyes. Machine Learning: Qué es, para qué sirve - Atica Ingeniería. Feb. de 2020. URL: https : / / aticaingenieria . cl / machine - learning - que - es - para - que - sirve/.
dc.relationGustavo A Cardona y Juan M Calderon. «Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations». En: Applied Sciences 9.8 (2019), pág. 1702.
dc.relationJose León y col. «Robot swarms theory applicable to seek and rescue operation». En: International Conference on Intelligent Systems Design and Applications. Springer. 2016, págs. 1061-1070.
dc.relationWilson O Quesada y col. «Leader-follower formation for uav robot swarm based on fuzzy logic theory». En: International Conference on Artificial Intelligence and Soft Computing. Springer. 2018, págs. 740-751.
dc.relationNicolás Gómez y col. «Leader-follower Behavior in Multi-agent Systems for Search and Rescue Based on PSO Approach». En: SoutheastCon 2022. IEEE. 2022, págs. 413-420.
dc.relationJuan D Pabon y col. «Event-Triggered Control for Weight-Unbalanced Directed Robot Networks». En: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, págs. 5831-5836.
dc.relationNestor I Ospina y col. «Argrohbots: An affordable and replicable ground homogeneous robot swarm testbed». En: IFAC-PapersOnLine 54.13 (2021), págs. 256-261.
dc.relationEdgar C Camacho, Nestor I Ospina y Juan M Calderón. «COVID-Bot: UV-C Based Autonomous Sanitizing Robotic Platform for COVID-19». En: Ifac-papersonline 54.13 (2021), págs. 317-322.
dc.relationEdgar C Camacho, Jose Guillermo Guarnizo, Juan M Calderon y col. «Design and Construction of a Cost-Oriented Mobile Robot for Domestic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 293-298
dc.relationGA Cardona y col. «Autonomous navigation for exploration of unknown environments and collision avoidance in mobile robots using reinforcement learning». En: 2019 SoutheastCon. IEEE. 2019, págs. 1-7.
dc.relationLaura J Padilla Reyes y col. «Adaptable Recommendation System for Outfit Selection with Deep Learning Approach». En: IFAC-PapersOnLine 54.13 (2021), págs. 605-610.
dc.relationSaith Rodrıguez y col. «Fast path planning algorithm for the robocup small size league». En: Robot Soccer World Cup. Springer. 2014, págs. 407-418.
dc.relationSaith Rodrıguez y col. «STOx’s 2016 Team description paper». En: (2013).
dc.relationSaith Rodrıguez y col. «STOx’s 2015 Extended Team Description Paper». En: Joao Pessoa, Brazil (2014).
dc.relationJuan M Calderon y col. «A Robot soccer team as a strategy to develop educational iniciatives». En: Latin American and Caribbean Conference for Engineering and Technology, Panama City, Panama. 2012.
dc.relationHeyson Báez y col. «Application of an educational strategy based on a soccer robotic platform». En: 2013 16th International Conference on Advanced Robotics (ICAR). IEEE. 2013, págs. 1-6.
dc.relationMarta Lucía y col. «CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL CONPES Iván Duque Márquez Presidente de la República». En: ().
dc.relationSagee Geetha Sethu. «The Inevitability of an International Regulatory Framework for Artificial Intelligence». En: Institute of Electrical y Electronics Engineers Inc., abr. de 2019, págs. 367-372. ISBN: 9781538680100. DOI: 10.1109/ICACTM.2019.8776819.
dc.relationHarry Surden. Machine Learning and Law. Mar. de 2014. URL: https://papers.ssrn. com/abstract=2417415.
dc.relationCONSEJO DE ESTADO. ACUERDO 80 DE 2019. 2019. URL: https://normativa.colpensiones.gov.co/colpens/docs/pdf/acuerdo_ cdeestado_0080_2019.pdf.
dc.relationArchit P. Patil, Devansh Jain Nawal y Dipika Jain. «Crime Prediction Application Using Artificial Intelligence». En: vol. 605. Springer, 2020, págs. 238-245. ISBN: 9783030305765. DOI: 10.1007/978-3-030-30577-2_20. URL: https://link.springer.com/ chapter/10.1007/978-3-030-30577-2_20.
dc.relationBrian Seamus Haney. «Applied Natural Language Processing for Law Practice». En: SSRN Electronic Journal (nov. de 2019). ISSN: 1556-5068. DOI: 10.2139/ssrn.3476351. URL: https://papers.ssrn.com/abstract=3476351.
dc.relationM Palmirani. Legal Knowledge and Information Systems: JURIX 2018: The Thirty-first Annual Conference. IOS Press, 2018. ISBN: 9781614999355. URL: https://books.google.com. co/books?id=hrh9DwAAQBAJ.
dc.relationShuijing Hu. «Comparative study on patent eligibility of artificial intelligence in the united states, china and japan». En: Institute of Electrical y Electronics Engineers Inc., ene. de 2020, págs. 965-968. ISBN: 9781728166971. DOI: 10.1109/ICITBS49701.2020.00215.
dc.relationJiajing Li y col. «A Markov logic networks based method to predict judicial decisions of divorce cases». En: Institute of Electrical y Electronics Engineers Inc., oct. de 2018, págs. 129-132. ISBN: 9781538651827. DOI: 10.1109/SmartCloud.2018.00029.
dc.relationGe Yan y col. «Law Article Prediction Based on Deep Learning». En: Institute of Electrical y Electronics Engineers Inc., jul. de 2019, págs. 281-284. ISBN: 9781728139258. DOI: 10. 1109/QRS-C.2019.00060.
dc.relationMasha Medvedeva, Michel Vols y Martijn Wieling. «Using machine learning to predict decisions of the European Court of Human Rights». En: Artificial Intelligence and Law 28 (2 2020), págs. 237-266. ISSN: 15728382. DOI: 10.1007/s10506-019-09255-y. URL: https://doi.org/10.1007/s10506-019-09255-y.
dc.relationBaogui Chen y col. «A Deep Learning Method for Judicial Decision Support». En: Institute of Electrical y Electronics Engineers Inc., jul. de 2019, págs. 145-149. ISBN: 9781728139258. DOI: 10.1109/QRS-C.2019.00040.
dc.relationChunyu Xia y col. «Similarity Analysis of Law Documents Based on Word2vec». En: Institute of Electrical y Electronics Engineers Inc., jul. de 2019, págs. 354-357. ISBN: 9781728139258. DOI: 10.1109/QRS-C.2019.00072.
dc.relationYadong Cui, Cao Yan y Liu Yan. Artificial intelligence and judicial modernization. Springer Singapore, ene. de 2019, págs. 1-224. ISBN: 9789813298804. DOI: 10.1007/978- 981- 32-9880-4.
dc.relationReshma Sheik y S. Jaya Nirmala. «Deep Learning Techniques for Legal Text Summarization». En: 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, UPCON 2021 (2021). DOI: 10.1109/UPCON52273.2021.9667640.
dc.relationNaimoonisa Begum y Ankur Goyal. «Analysis of Legal Case Document Automated Summarizer». En: Proceedings of IEEE International Conference on Signal Processing,Computing and Control 2021-October (2021), págs. 533-538. ISSN: 26438615. DOI: 10.1109/ISPCC53510.2021.9609442.
dc.relationPurbid Bambroo y Aditi Awasthi. «LegalDB: Long DistilBERT for Legal Document Classification; LegalDB: Long DistilBERT for Legal Document Classification». En: (2021). DOI: 10 . 1109 / ICAECT49130 . 2021 . 9392558. URL: https://www.courtlistener.com/api/bulk-.
dc.relationDinh-Truong Do. «Kodiak@ALQAC2021: Deep Learning for Vietnamese Legal Information Processing». En: (dic. de 2021), págs. 1-5. DOI: 10.1109/KSE53942.2021.9648744.
dc.relationDaniel A. Rincón-Riveros y col. «Automation system based on NLP for legal clinic assistance». En: IFAC-PapersOnLine 54 (13 2021), págs. 283-288. ISSN: 24058963. DOI: 10.1016/J.IFACOL.2021.10.460.
dc.relationRiya Sil y col. «Artificial Intelligence and Machine Learning based Legal Application: The State-of-the-Art and Future Research Trends». En: vol. 2019-Janua. Institute of Electrical y Electronics Engineers Inc., oct. de 2019, págs. 57-62. ISBN: 9781728148267. DOI: 10 . 1109/ICCCIS48478.2019.8974479.
dc.relationAli Sadeghian y col. «Automatic semantic edge labeling over legal citation graphs». En: Artificial Intelligence and Law 26 (2018), págs. 127-144. DOI: 10 . 1007 / s10506 - 018 - 9217-1. URL: https://doi.org/10.1007/s10506-018-9217-1.
dc.relationKirill Romanyuk. «Game Theoretic Approach for Applying Artificial Intelligence in the Credit Industry». En: Institute of Electrical y Electronics Engineers Inc., feb. de 2019, págs. 1-6. ISBN: 9781538671467. DOI: 10.1109/CTIT.2018.8649493.
dc.relationR.S. Becerra. La responsabilidad extracontractual de la administración pública. Ediciones Jurıdicas Gustavo Ibáñez, 2003. ISBN: 9789588192185.
dc.relationLambrini Seremeti y Ioannis Kougias. «Legal issues within ambient intelligence environments». En: Institute of Electrical y Electronics Engineers Inc., jul. de 2019. ISBN: 9781728149592. DOI: 10.1109/IISA.2019.8900748.
dc.relationHarry Surden. «Artificial Intelligence and Law: An Overview, 35 GA». En: U. L. Rev (2019). URL: https://scholar.law.colorado.edu/articles/1234/
dc.relationKevin D. Ashley. Artificial intelligence and legal analytics: New tools for law practice in the digital age. Cambridge University Press, ene. de 2017, págs. 1-426. ISBN: 9781316761380. DOI: 10 . 1017 / 9781316761380. URL: /core / books / artificial - intelligence - and - legal - analytics/E7D705EEF392501A1DB180645917E7E0.
dc.relationStephan Raaijmakers. «Artificial Intelligence for Law Enforcement: Challenges and Opportunities». En: IEEE Security and Privacy 17 (5 sep. de 2019), págs. 74-77. ISSN: 15584046. DOI: 10.1109/MSEC.2019.2925649.
dc.relationJuan, Jorge Almonacid Sierra y Yeisson Coronel Ávila. «Aplicabilidad de la inteligencia artificial y la tecnología blockchain en el derecho contractual privado * Application of Artificial Intelligence and Blockchain in Contract Law». En: Revista de derecho privado (2020), pág. 24. DOI: 10.18601/01234366.
dc.relationAlfredo Monroy, Hiramand Calvo y Alexander Gelbukh. «NLP for shallow question answering of legal documents using graphs». En: vol. 5449 LNCS. Springer, Berlin, Heidelberg, 2009, págs. 498-508. ISBN: 3642003818. DOI: 10 . 1007 / 978 - 3 - 642 - 00382 - 0 _ 40. URL: https://link.springer.com/chapter/10.1007/978-3-642-00382-0_40.
dc.relationMarco Lippi y col. «CLAUDETTE: an automated detector of potentially unfair clauses in online terms of service». En: Artificial Intelligence and Law 27 (2019), págs. 117-139. DOI: 10.1007/s10506-019-09243-2. URL: https://doi.org/10.1007/s10506- 019-09243-2.
dc.relationIlaria Angela Araszkiewicz Michałand Amantea y col. «ICAIL Doctoral Consortium, Montreal 2019». En: vol. 28. Springer, jun. de 2020, págs. 267-280. DOI: 10.1007/s10506- 020- 09267- z. URL: https://link- springer- com.craiustadigital.usantotomas.edu.co/article/10.1007/s10506-020-09267- z.
dc.relationJohn Zeleznikow y Andrew Stranieri. «Knowledge discovery in the legal domain». En: IEEE, 1997, págs. 574-577. DOI: 10.1109/tai.1997.632305.
dc.relationOffice Open XML - Anatomy of an OOXML WordProcessingML File. URL: http://officeopenxml.com/anatomyofOOXML.php.
dc.relationJasmeet Singh y Vishal Gupta. «Text Stemming». En: ACM Computing Surveys (CSUR) 49 (3 sep. de 2016). ISSN: 15577341. DOI: 10.1145/2975608. URL: https://dl.acm. org/doi/abs/10.1145/2975608.
dc.relationVijayarani Mohan. «Preprocessing Techniques for Text Mining-An Overview Privacy Preserving Data Mining View project». En: (). URL: https://www.researchgate.net/publication/339529230.
dc.relationWhat Are Baseline Models and Benchmarking For Machine Learning. . . – Towards AI. URL: https : / / towardsai . net / p / l / what - are - baseline - models - and - benchmarking-for-machine-learning-why-we-need-them
dc.relationJurafsky Daniel y James H Martin. «Speech and Language Processing». En: (2021).
dc.relationCai Zhi Liu y col. «Research of Text Classification Based on Improved TF-IDF Algorithm». En: 2018 IEEE International Conference of Intelligent Robotic and Control Engineering, IRCE 2018 (oct. de 2018), págs. 69-73. DOI: 10.1109/IRCE.2018.8492945.
dc.relation1.4. Support Vector Machines — scikit-learn 1.0.2 documentation. URL: https://scikitlearn.org/stable/modules/svm.html.
dc.relation6.1. Pipelines and composite estimators — scikit-learn 1.0.2 documentation. URL: https://scikit-learn.org/stable/modules/compose.html#combiningestimators.
dc.relation1.13. Feature selection — scikit-learn 1.0.2 documentation. URL: https://scikit-learn. org / stable / modules / feature _ selection . html # univariate - feature - selection.
dc.relationLeo Breiman. «Random Forests». En: 45 (2001), págs. 5-32.
dc.relationConsejo de Estado | – Justicia – Guía – Control. URL: https://www.consejodeestado. gov.co/.
dc.relationLarry. Python - Transformar números a literales. Mar. de 2008. URL: https : / / www . lawebdelprogramador . com / foros / Python / 297286 - Transformar-numeros-a-literales.html.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleModelado de un algoritmo para la identificación de problemas jurídicos y tesis en las providencias de la sección primera del consejo de estado usando técnicas de procesamiento de lenguaje natural.


Este ítem pertenece a la siguiente institución