dc.contributorVelasco Peña, Marco Antonio
dc.contributorhttps://orcid.org/ 0000-0003-4436-9443
dc.contributorhttps://scholar.google.com/citations?hl=es&user=tqT9rd8AAAAJ
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001098063
dc.contributorUniversidad Santo Tomás
dc.creatorSepúlveda Sánchez, Mateo
dc.date.accessioned2022-05-05T22:33:09Z
dc.date.available2022-05-05T22:33:09Z
dc.date.created2022-05-05T22:33:09Z
dc.date.issued2022-05-04
dc.identifierSepúlveda Sánchez, M. (2022). Determinación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografía [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional
dc.identifierhttp://hdl.handle.net/11634/44444
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractNowadays, cellular materials have become one of the most promising materials because they have several applications in fields such as aeronautics, aerospace, biomedical, and the military industries. For this reason, several investigations have been carried out to improve manufacturing techniques or the materials used for them. Ones of these studies about this issue is the paper titled: "Design for Additive Manufacturing of Structural Elements with Cellular Materials Using Voronoi Diagrams and Delaunay Triangulations: Biological and Structural Applications," written by Fahir Castañeda. His paper proposes a new efficient way to manufacture this kind of materials by additive manufacturing, in such a way that the size and the number of pores were bigger in the higher stress zones than in the lower stress zone. in this paper the models obtained in the previously mentioned article will be tested by FEA simulation and laboratory compressive test to check if those models are viable in larger works implemented in the future.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Mecánica
dc.publisherFacultad de Ingeniería Mecánica
dc.relationAndrzejewska, E. (2019). Free-radical photopolymerization of multifunctional monomers. Three-Dimensional Microfabrication Using Two-Photon Polymerization, structure III, 77–99. https://doi.org/10.1016/B978-0-12-817827-0.00002-3
dc.relationArslan, G. (2011). STRUCTURE-PROPERTY RELATIONSHIP IN TITANIUM FOAMS. www.sciencedirect.com/science/article/pii/S0079642598000048
dc.relationBastani, S., & Mohseni, M. (2015). UV-Curable Nanocomposite Coatings and Materials. Handbook of Nanoceramic and Nanocomposite Coatings and Materials, 155–182. https://doi.org/10.1016/B978-0-12-799947-0.00007-9
dc.relationBenedetti, M., du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering R: Reports, 144, 100606. https://doi.org/10.1016/j.mser.2021.100606
dc.relationBhate, D. (2019). Four questions in cellular material design. Materials, 12(7). https://doi.org/10.3390/ma12071060
dc.relationBhate, D., Penick, C., Ferry, L., & Lee, C. (2019). Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs, 3(1), 19. https://doi.org/10.3390/designs3010019
dc.relationBjelkhagen, H. I. (2005). Holographic Recording Materials and Their Processing. Encyclopedia of Modern Optics, 1993, 47–57. https://www.sciencedirect.com/science/article/pii/B012369395000779X
dc.relationBonfanti, A., Bhaskar, A., & Ashby, M. F. (2016). Plastic Deformation of Cellular Materials. Reference Module in Materials Science and Materials Engineering, 15. https://doi.org/10.1016/B978-0-12-803581-8.03009-5
dc.relationCastañeda, F. (2018). Diseño para manufactura aditiva de elementos estructurales con materiales celulares mediante el uso de diagramas de Voronoi y triangulaciones de Delaunay: Aplicaciones biológicas y estructurales. Universidad NAcional de Colombia.
dc.relationDong, N. (2015, December 3). Formlabs Form 2 3D Printer review: An excellent 3D printer. Cnet. https://www.cnet.com/reviews/formlabs-form-2-3d-printer-review/
dc.relationDuarte, I., Peixinho, N., Andrade-Campos, A., & Valente, R. (2018). Special Issue on Cellular Materials. Science and Technology of Materials, 30(1), 1–3. https://doi.org/10.1016/j.stmat.2018.05.001
dc.relationErlinde. (2018). Which 3D Printed Resin Is Right for You? Materialise. https://i.materialise.com/blog/en/3d-printed-resin-overview/
dc.relationFormlabs. (n.d.). Uso de la Grey Pro Resin. Formlabs. Retrieved July 24, 2021, from https://support.formlabs.com/s/article/Using-Grey-Pro-Resin?language=es
dc.relationFormLabs. (2014). Materials Data Sheet. FormLabs Materials Data Sheet, 76–77. http://usglobalimages.stratasys.com/Main/Secure/Material Specs MS/PolyJet-Material-Specs/Digital_Materials_Datasheet.pdf?v=635581278098921962
dc.relationFratzl, P., & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in Materials Science, 52(8), 1263–1334. https://doi.org/10.1016/J.PMATSCI.2007.06.001
dc.relationGibson, L. J., Ashby, M. F., Wegst, U., & Olive, R. (1995). The mechanical properties of natural materials. I. Materials property charts. 450, 141–162.
dc.relationGreen, D. J. (2001). Porous Ceramic Processing. Encyclopedia of Materials: Science and Technology, 7758–7761. https://doi.org/10.1016/B0-08-043152-6/01395-4
dc.relationKijima, H., Yamada, S., Konishi, N., Kubota, H., Tazawa, H., Tani, T., Suzuki, N., Kamo, K., Okudera, Y., Sasaki, K., Kawano, T., & Shimada, Y. (2014). The reliability of classifications of proximal femoral fractures with 3-dimensional computed tomography: The new concept of comprehensive classification. Advances in Orthopedics, 2014. https://doi.org/10.1155/2014/359689
dc.relationMancini, L. A. (n.d.). Fracturas por estrés del fémur. Musculoskeletalkey. Retrieved January 20, 2021, from https://musculoskeletalkey.com/stress-fractures-of-the-femur/
dc.relationMangram, A., Moeser, P., Corneille, M. G., Prokuski, L. J., Zhou, N., Sohn, J., Chaliki, S., Oguntodu, O. F., & Dzandu, J. K. (2014). Geriatric trauma hip fractures: is there a difference in outcomes based on fracture patterns? World Journal of Emergency Surgery, 9(1), 59. https://doi.org/10.1186/1749-7922-9-59
dc.relationMateja, E. (2011). Mechanical properties of cellular materials. https://pdfs.semanticscholar.org/62fb/bb4f0a0a3d3785e07743b0bda31346e596e8.pdf
dc.relationMathukumar, S., Nagarajan, V. A., & Radhakrishnan, A. (2019). Analysis and validation of femur bone data using finite element method under static load condition. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5547–5555. https://doi.org/10.1177/0954406219856028
dc.relationMazur, M., Leary, M., McMillan, M., Sun, S., Shidid, D., & Brandt, M. (2017). Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by Selective Laser Melting (SLM). Laser Additive Manufacturing, 119–161. https://doi.org/10.1016/B978-0-08-100433-3.00005-1
dc.relationMELO PEREZ, A. M. (2017). Análisis de elementos con sección transversal variable [Universidad autonoma del estado de Hidalgo]. http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/1953
dc.relationMiguel Ángel, P. R. (n.d.). Cellular Nanocomposites: a new type of light weight advanced materials with improved properties. Retrieved August 22, 2019, from http://crono.ubu.es/innovationh2020/pdf/cellmat.pdf#targetText=Cellular Materials (also known as,Open cell cellular materials
dc.relationMurr, L. E. (2015). Comparison of Biological (Natural) Material and Engineering Materiasl Properties. Handbook of Materials Structures, Properties, Processing and Performance, 1–1152. https://doi.org/10.1007/978-3-319-01815-7
dc.relationPrabhu, S., Raja, V. K. B., & Nikhil, R. (2015). Applications of Cellular Materials – An Overview. Applied Mechanics and Materials, 766–767, 511–517. https://doi.org/10.4028/www.scientific.net/amm.766-767.511
dc.relationSanchez, S. (2017). Impresión 3D por estereolitografía. I3Dnatives. https://www.3dnatives.com/es/impresion-3d-por-estereolitografia-les-explicamos-todo/
dc.relationSolidWorks Corp. (2011). Comprensión del análisis no lineal. Informe Tecnico de Simulacion No Lineal, 9.
dc.relationSolórzano, E., & Rodriguez-Perez, M. A. (2013). Cellular Materials. In Structural Materials and Processes in Transportation (pp. 371–374). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527649846.part4
dc.relationSun, Y., & Li, Q. M. (2018). Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. International Journal of Impact Engineering, 112, 74–115. https://doi.org/10.1016/j.ijimpeng.2017.10.006
dc.relationTchepel, D., Fernandes, F. A. O., Anjos, O., & Alves de Sousa, R. (2016). Mechanical Properties of Natural Cellular Materials. Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-803581-8.04056-X
dc.relationUlm, F.-J. (2001). Construction: Cellular Materials. In Encyclopedia of Materials: Science and Technology (pp. 1570–1574). Elsevier. https://doi.org/10.1016/B0-08-043152-6/00280-1
dc.relationUrbas, R., Elesini, U. S., Cigula, T., & Poljaček, S. M. (2015). Pad Printing. In S. Thomas (Ed.), Printing on Polymers: Fundamentals and Applications (pp. 263–278). Elsevier Inc. https://doi.org/10.1016/B978-0-323-37468-2.00016-6
dc.relationWang, P., Wang, X., Zheng, Z., & Yu, J. (2017). Stress distribution in graded cellular materials under dynamic compression. Latin American Journal of Solids and Structures, 14(7), 1251–1272. https://doi.org/10.1590/1679-78253428
dc.relationYekani Fard, M. (2011). Nonlinear Inelastic Mechanical Behaviour Of Epoxy Resin Polumeric Materials (Issue August). ARIZONA STATE UNIVERSITY.
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDeterminación del comportamiento bajo cargas de compresión de un material celular fabricado mediante manufactura aditiva por estereolitografía


Este ítem pertenece a la siguiente institución