dc.contributorCamacho Poveda, Edgar Camilo
dc.contributorhttps://orcid.org/0000-0002-6084-2512
dc.contributorhttps://scholar.google.es/citations?user=tJG988kAAAAJ&hl=es
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084
dc.creatorReyes Fernandez, Andres Felipe
dc.date.accessioned2020-09-17T18:19:41Z
dc.date.available2020-09-17T18:19:41Z
dc.date.created2020-09-17T18:19:41Z
dc.date.issued2020-09-17
dc.identifierReyes Fernandez, A. F. (2020). Herramienta para la generación de texto basada en una interfaz cerebro-computador [Tesis de pregrado, Universidad Santo Tomas] Repositorio Institucional - Universidad Santo Tomas
dc.identifierhttp://hdl.handle.net/11634/29868
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe purpose of the present work is about the development of a tool that allows people to communicate, only through their voluntary blinks. This tool provides a communication link mainly for people with motor disabilities, who cannot communicate through voice or text. This work takes the electroencephalogram (EEG) as the source of information to solve the problem of detecting the voluntary blinks. In this case, the EEG is recorded by the Mindwave Mobile 2 headset (from Neurosky company), which counts on one EEG channel, located in the frontal lobe of the scalp. In order to perform the digital processing of the EEG signal, a recurrent neural network (RNN) was implemented, more specifically a Long-Short Term Memory (LSTM), as these types of networks are effective for time series applications, for instance, EEG signals. The neural network implemented in this work, classifies the EEG signal in one of 5 possible classes, named: No blink, One blink, Two blinks, Three blinks, Other. The results of the trained model were an average accuracy percentage of 92%. Finally, the neural network was embedded in a native Android mobile application, that connects via Bluetooth to the Mindwave Mobile 2, and shows a virtual keyboard consisting of the 27 letters of the spanish alphabet, plus three characters are the commands “delete”, “space”, and “enter”. Each character can be selected by the user only through a determined number of voluntary blinks executed at certain times. When the user types a word and selects the “enter” command, the word is presented audio visually by the application. The mobile application was developed in Java and XML languages in the Android Studio IDE (integrated development environment). In order to verify its performance, an experiment with eight people was executed, that achieved an average spelling precision of 91,26%. On the other hand, the neural network model was designed and implemented in Python language using the TensorFlow and Keras libraries (machine learning libraries), and it was trained in the Google Colab software development environment.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationAlejandro Antonio Torres García, Dr. Carlos Alberto Reyes, Dr. Luis Villaseñor Pineda. Análisis y clasificación de electroencefalogramas (EEG) registrados durante el habla imaginada. Tesis doctoral del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). 2016.
dc.relationSaha, S., Mamun, K.A., Ahmed, K.I., Mostafa, R., Naik, G.R., Khandoker, A.H., Darvishi, S., & Baumert, M. (2019). Progress in Brain Computer Interfaces: Challenges and Trends. ArXiv, abs/1901.03442.
dc.relationShurkhay, Vsevolod & Alexandrova, Evgenia & Goryaynov, Sergey & Potapov, Alexander. (2015). The Current State of the Brain-Computer Interface Problem.
dc.relationAvinash Kumar Singh, Yu-Kai Wang, lun-Tai King, Chin-Teng Lin, and Li-Wei Ko. A Simple Communication System based on Brain Computer Interface. Tainan, Taiwan nov. 20-22, 2015.
dc.relationPadfield, N., Zabalza, J., Zhao, H., Masero, V., & Ren, J. (2019). EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors (Basel, Switzerland), 19(6), 1423. https://doi.org/10.3390/s19061423
dc.relationChin-Teng Lin, Chih-Sheng Huang, Wen-Yu Yang, Avinash Kumar Singh, Chun-Hsiang Chuang, and Yu-Kai Wang. Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering. 2018.
dc.relationM. Abo-Zahhad, Sabah M. Ahmed, Sherif N. Abbas. A New EEG Acquisition Protocol for Biometric Identification Using Eye Blinking Signals. I.J. Intelligent Systems and Applications, 2015, 06, 48-54.
dc.relationKaminer, Jaime & Powers, Alice & Horn, Kyle & Hui, Channing & Evinger, Craig. (2011). Characterizing The Spontaneous Blink Generator: An Animal Model. The Journal of neuroscience: the official journal of the Society for Neuroscience. 31. 11256-67. 10.1523/JNEUROSCI.6218-10.2011.
dc.relationMansor, Wahidah & Rani, Mohd & Wahy, Nurfatehah. (2011). Integrating Neural Signal and Embedded System for Controlling Small Motor. 10.5772/22210.
dc.relationMichael Varela, Department of Computer Engineering, ITCR, Cartago, Costa Rica. 2015. Raw EEG Signal Processing for BCI Control Based on Voluntary Eye Blinks. Proceedings of the 2015 IEEE thirty fifth central American and Panama convention (Concapan XXXV).
dc.relationMerquil Stiven Rodriguez Alvarez, Edwin Eduardo Millan Rojas. Diseño de una interfaz neuronal para personas con discapacidad motora. Universidad Distrital Francisco José de Caldas.
dc.relationPaula Brandão Furlan, Almir Kimura Junior, Charles Luiz Silva de Melo, Giovanni Ribeiro Caldeira, Rayza Araújo Bezerra. Portable communication system for disabled speech people controlled by Electroencephalographic signals. 2016.
dc.relationAlex Larson, Joshua Herrera, Kiran George and Aaron Matthews. Electrooculography based Electronic Communication Device for Individuals with ALS. 2017.
dc.relationLic. Ricardo A. Koon, Lic. María Eugenia de la Vega. El Impacto Tecnológico En Las Personas Con Discapacidad.
dc.relationNaciones Unidas. Objetivos de Desarrollo del Milenio. https://www.un.org/es
dc.relationUnidad Proyeccion Social. Universidad Santo Tomás. Documento Marco Proyección Social. 2015.
dc.relationZeki Oralhan. A New Paradigm for Region-Based P300 Speller in Brain Computer Interface. Received July 13, 2019, accepted July 31, 2019.
dc.relationJ Utama and G Palada. Prosthetic arm Controller Based on Brainwaves Spectrum EEG Sensor. 2019 IOP Conf. Ser.: Mater. Sci. Eng. 662 052017.
dc.relationSalma Alhagry, Aly Aly Fahmy, Reda A. El-Khoribi. Emotion Recognition based on EEG using LSTM Recurrent Neural Network. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 10, 2017.
dc.relationAlexander Craik. Deep learning for electroencephalogram (EEG) classification tasks: a review. et al 2019 J. Neural Eng. 16 031001.
dc.relationSarah N. AbdulkaderAyman AtiaMostafa-Sami M. Mostafa. Brain computer interfacing: Applicationsand challenges. HCI-LAB, Department of Computer Science, Faculty of Computers and Information, Helwan University, Cairo, Egypt. 2015.
dc.relationRahib H. Abiyev, Nurullah Akkaya, Ersin Aytac Irfan Günsel, and Ahmet Çagman. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks. 2016.
dc.relationEwelina Sobotnicka, Aleksander Sobotnicki. BCI interface – new opportunities and hopes for the disabled. An overview of available solutions. Institute of Medical Technology and Equipment ITAM Zabrze 118 Roosevelt St., 41-800 Zabrze, Poland.
dc.relationJunhua Li, Member, IEEE, Gong Chen, Pavithra Thangavel, Haoyong Yu, Nitish Thakor, Fellow IEEE, Anastasios Bezerianos, Senior Member, IEEE, and Yu SUN, Member, IEEE. A robotic knee exoskeleton for walking assistance and connectivity topology exploration in EEG signal. 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore.
dc.relationElectroencephalogram. Alexander J. Casson, Mohammed Abdulaal, Meera Dulabh, Siddharth Kohli, Sammy Krachunov, and Eleanor Trimble. Springer International Publishing AG 2018 EEG.
dc.relationLuis, Luis & Gómez-Gil, Jaime. (2012). Brain Computer Interfaces, a Review. Sensors (Basel, Switzerland). 12. 1211-79. 10.3390/s120201211.
dc.relationShai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Published 2014 by Cambridge University Press.
dc.relationJuri Fedjaev. Decoding EEG Brain Signals using Recurrent Neural Networks. MASTER THESIS. Technische Universitat Munchen. 2017.
dc.relationDu, K.-L & Swamy, M.N.s. (2014). Recurrent Neural Networks. 10.1007/978-1-4471-5571-3_11.
dc.relationStaudemeyer, Ralf & Morris, Eric. (2019). Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks.
dc.relationMiguel A. Sovierzoski, Fernanda I. M. Argoud, and Fernando M. de Azevedo. Identifying Eye Blinks in EEG Signal Analysis. Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine. Shenzhen, China, May 30-31, 2008.
dc.relationBrijil Chambayil, Rajesh Singla, R. Jha. EEG Eye Blink Classification Using Neural Network. WCE 2010, June 30 - July 2, 2010, London, U.K.
dc.relationMohit Agarwal, Raghupathy Sivakumar. Blink: A Fully Automated Unsupervised Algorithm for Eye-Blink Detection in EEG Signals. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton) Allerton Park and Retreat Center Monticello, IL, USA, September 24-27, 2019.
dc.relationDiego V. Escamilla, Cristywelina Escamilla, Ciro A. Rodríguez. Eye Blink Detection Using a Support Vector Machine Classifier. Centro de Innovación en Diseño y Tecnología. Tecnológico de Monterrey. Monterrey N.L., México.
dc.relationDalin Yang and Keum-Shik Hong. Quadcopter Control via Onset Eye Blink Signals: A BCI Study. 2019 19th International Conference on Control, Automation and Systems (ICCAS 2019) Oct. 15~18, 2019; ICC Jeju, Jeju, Korea.
dc.relationMohd Shaifulrizal b Abd Rani, Wahidah bt. Mansor. DETECTION OF EYE BLINKS FROM EEG SIGNALS FOR HOME LIGHTING SYSTEM ACTIVATION. Proceeding of the 6th International Symposium on Mechatronics and its Applications (ISMA09), Sharjah, UAE, March 24-26,2009.
dc.relationWon-Du Chang a, Ho-Seung Chaa, Kiwoong Kimb, Chang-Hwan Ima. Detection of eye blink artifacts from single prefrontal channel electroencephalogram. Computer methods and programs in biomedicine I24 (2016) 19-30.
dc.relationRoy, Raphaëlle N. and Charbonnier, Sylvie and Bonnet, Stéphane Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms. (2014) Biomedical Signal Processing and Control, 14. 256-264. ISSN 1746-8094.
dc.relationZoran Tiganj, Mamadou Mboup, Christophe Pouzat, Bouchra Lotfi. An algebraic method for eye blink artifacts detection in single channel EEG recordings. 17TH INTERNATIONAL CONFERENCE ON BIOMAGNETISM ADVANCES IN BIOMAGNETISM – BIOMAG2010, Mar 2010, Dubrovnik, Croatia. pp.175-178, ff10.1007/978-3-642-12197-5_38ff. ffhal-00518627ff.
dc.relationL. Ramya Stephygraph, N. Arunkumar, and V. Venkatraman. Wireless Mobile Robot Control through Human Machine Interface using Brain Signals. 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, T.N., India. 6 - 8 May 2015. pp.596-603.
dc.relationPaula Ivone Rodriguez, Jose Mejia, Boris Mederos, Nayeli Edith Moreno, and Victor Manuel Mendoza. Acquisition, analysis and classification of EEG signals for control design. Universidad Autónoma de Ciudad Juárez.
dc.relationXiaotong Gu, Zehong Cao, Alireza Jolfaei, Peng Xu, Dongrui Wu, Tzyy-Ping Jung, and Chin-Teng Lin. EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. 2020.
dc.relationAasim Raheel, Syed M. Anwar, Muhammad Majid, Bilal Khan, Ehatisham-ul-Haq. Real Time Text Speller based on Eye Movement Classification Using Wearable EEG Sensors. SAI Computing Conference 2016.
dc.relationTrung-Hau Nguyen, Da-Lin Yang, and Wan-Young Chung. A High-Rate BCI Speller Based on Eye-Closed EEG Signal. Received May 10, 2018, accepted June 11, 2018.
dc.relationAtish Udayashankar, Amit R Kowshik, Chandramouli S, H S Prashanth. ASSISTANCE FOR THE PARALYZED USING EYE BLINK DETECTION. 2012 Fourth International Conference on Digital Home.
dc.relationMohammad H. Alomari, Ayman AbuBaker, Aiman Turani, Ali M. Baniyounes, Adnan Manasreh. EEG Mouse:A Machine Learning-Based Brain Computer Interface. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 5, No. 4, 2014.
dc.relationMr. Ramesh C R, Prof. Lyla B Das. Brain Computer Interface Device for Speech Impediments. 2015 International Conference on Control, Communication & Computing India (ICCC) 19-21 November 2015 Trivandrum.
dc.relationBrain Wave Signal (EEG) of NeuroSky, Inc. December 15, 2009.
dc.relationBrijil Chambayil, Rajesh Singla, R. Jha. Virtual Keyboard BCI using Eye blinks in EEG. 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications.
dc.relationSuneth Pathirana, David Asirvatham, Md Gapar Md Johar. Designing Virtual Keyboards for Brain-Computer Interfaces. 2018.
dc.relationKhalil Ullah, Mohsin Ali, Muhammad Rizwan, Muhammad Imran. Low-Cost Single-Channel EEG Based Communication System for People with Lock-in Syndrome. 2011.
dc.relationLucas B. Coffey. Assessing Ratio-Based Fatigue Indexes Using a Single Channel EEG. University of North Florida. 2018.
dc.relationNitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. 15(56): 1929-1958, 2014.
dc.relationSwagata Das, Devashree Tripathy, Jagdish Lal Raheja. Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG. Springer Singapore, 2018.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleHerramienta para la generación de texto basada en una interfaz cerebro-computador


Este ítem pertenece a la siguiente institución