dc.creatorPérez, Andrea K.
dc.creatorQuintero, Carlos A.
dc.creatorRodríguez, Saith
dc.creatorRojas, Eyberth
dc.creatorPeña, Oswaldo
dc.creatorDe La Rosa, Fernando
dc.date.accessioned2019-07-15T19:13:47Z
dc.date.accessioned2022-09-28T14:37:59Z
dc.date.available2019-07-15T19:13:47Z
dc.date.available2022-09-28T14:37:59Z
dc.date.created2019-07-15T19:13:47Z
dc.date.issued2018-02-17
dc.identifierhttp://hdl.handle.net/11634/17692
dc.identifierhttps://doi.org/10.1007/978-3-319-76261-6_6
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3662420
dc.description.abstractThis paper presents a proposal for the identification of multimodal signals for recognizing 4 human emotions in the context of humanrobot interaction, specifically, the following emotions: happiness, anger, surprise and neutrality. We propose to implement a multiclass classifier that is based on two unimodal classifiers: one to process the input data from a video signal and another one that uses audio. On one hand, for detecting the human emotions using video data we have propose a multiclass image classifier based on a convolutional neural network that achieved 86.4% of generalization accuracy for individual frames and 100% when used to detect emotions in a video stream. On the other hand, for the emotion detection using audio data we have proposed a multiclass classifier based on several one-class classifiers, one for each emotion, achieving a generalization accuracy of 69.7%. The complete system shows a generalization error of 0% and is tested with several real users in an sales-robot application.
dc.relationKitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.: Robocup: a challenge problem for AI. AI Mag. 18(1), 73 (1997)
dc.relationChristensen, H.I., Batzinger, T., Bekris, K., Bohringer, K., Bordogna, J., Bradski, G., Brock, O., Burnstein, J., Fuhlbrigge, T., Eastman, R., et al.: A roadmap for us robotics: from internet to robotics. Computing Community Consortium (2009)
dc.relationMulti-Annual Roadmap. For horizon 2020. SPARC Robotics, eu-Robotics AISBL, Brussels, Belgium (2017)
dc.relationDhall, A., Ramana Murthy, O., Goecke, R., Joshi, J., Gedeon, T.: Video and image based emotion recognition challenges in the wild: Emotiw 2015. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 423– 426. ACM (2015)
dc.relationGoodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum. Comput. Interact. 1(3), 203–275 (2007)
dc.relationvan Beek, L., Chen, K., Holz, D., Matamoros, M., Rascon, C., Rudinac, M., des Solar, J.R., Wachsmuth, S.: Robocup@ home 2015: Rule and regulations (2015)
dc.relationAkgun, B., Cakmak, M., Jiang, K., Thomaz, A.L.: Keyframe-based learning from demonstration. Int. J. Soc. Robot. 4(4), 343–355 (2012)
dc.relationLuo, R.C., Wu, Y.C.: Hand gesture recognition for human-robot interaction for service robot. In: 2012 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 318–323. IEEE (2012)
dc.relationAlonso-Mart´ın, F., Malfaz, M., Sequeira, J., Gorostiza, J.F., Salichs, M.A.: A multimodal emotion detection system during human-robot interaction. Sensors 13(11), 15549–15581 (2013)
dc.relationSubashini, K., Palanivel, S., Ramalingam, V.: Audio-video based classification using SVM and AANN. Int. J. Comput. Appl. 53(18), 43–49 (2012)
dc.relationAgrawal, U., Giripunje, S., Bajaj, P.: Emotion and gesture recognition with soft computing tool for drivers assistance system in human centered transportation. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4612–4616. IEEE (2013)
dc.relationLeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
dc.relationDeng, L., Dong, Y.: Deep learning: methods and applications. Found. Trends Signal Process. 7(3–4), 197–387 (2014)
dc.relationRodriguez, S., P´erez, K., Quintero, C., L´opez, J., Rojas, E., Calder´on, J.: Identification of multimodal human-robot interaction using combined kernels. In: Sn´aˇsel, V., Abraham, A., Kr¨omer, P., Pant, M., Muda, A.K. (eds.) Innovations in Bio-Inspired Computing and Applications. AISC, vol. 424, pp. 263–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28031-8 23
dc.relationKahou, S.E., Bouthillier, X., Lamblin, P., Gulcehre, C., Michalski, V., Konda, K., Jean, S., Froumenty, P., Dauphin, Y., Boulanger-Lewandowski, N., et al.: Emonets: multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10(2), 99–111 (2016)
dc.relationVedaldi, A., Lenc, K.: Matconvnet – convolutional neural networks for MATLAB. In: Proceeding of the ACM International Conference on Multimedia (2015)
dc.relationDjango: Aquila digital signal processing C++ library (2014). https://aquila-dsp. org/
dc.relationLibsvm – a library for support vector machines (2015). https://www.csie.ntu.edu. tw/∼cjlin/libsvm/
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia
dc.titleIdentification of multimodal signals for emotion recognition in the context of human-robot interaction
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos


Este ítem pertenece a la siguiente institución