dc.contributor | Bautista Amorocho, Henry | |
dc.creator | Macías Gómez, Fabio | |
dc.date.accessioned | 2019-10-02T16:55:38Z | |
dc.date.available | 2019-10-02T16:55:38Z | |
dc.date.created | 2019-10-02T16:55:38Z | |
dc.date.issued | 2019-10-02 | |
dc.identifier | Macías Gómez, F. (2019). Diseño de un modelo in vitro de células epiteliales primarias gingivales humanas para evaluar infectividad de Helicobacter pylori (ATCC 43504) [Tesis de grado]. Universidad Santo Tomás, Bucaramanga, Colombia | |
dc.identifier | http://hdl.handle.net/11634/18979 | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.description.abstract | Background: Evidence on oral pathologies associated with Helicobacter pylori is controversial, especially because there is no certainty about the infecting capacity of the bacteria in oral tissue. Therefore, it is important to evaluate methodologies to establish the adhesion capacity of H. pylori to the host cell in the process of pathogenesis.
Objective: To evaluate infectious capacity of H. pylori (ATCC 43504) to infect on Human Primary Gingival Epithelial Cells.
Methodology: Human gingival biopsies from healthy donors were mechanically disrupted and digested with proteolytic enzymes and antioxidants. The cell pellet was suspended in Williams’ medium supplemented with antimicrobials, fetal bovine serum and growth factors. Cells were cultured for two weeks in 12-well plates at 37°C and 10% CO2 atmosphere. The epithelial phenotype was confirmed by Hematoxylin & Eosin staining (H&E) and immunohistochemistry for membrane epithelial membrane antigen (EMA) and cytokeratin cocktail AE1/AE3. The evaluation of the infectious capacity was carried out by indirect immunofluorescence (IFI) with anti-H.pylori antibody. A multiplicity of infection MOI (bacteria: cell) of 100 in monolayers with 70% confluence was used; As positive and negative controls of the infection, gastric tumor cell lines (AGS) and kidney embryonic cells (293TN) of human origin were used, respectively.
Results and conclusions: Viable and proliferating gingival cells were isolated, with initial confluence of 20% at 72 hours and 100% at ten days of incubation. H&E staining evidenced the epithelial morphology of flat cells with a cylindrical shape and a prominent nucleus; and the phenotype of epithelial origin was confirmed with EMA and AE1/AE3 (positivity of 80% and 60%, respectively). IFI demonstrated absence of H. pylori in the primary gingival cells with fluorescence 0.4 ± 0.5%, while the positive and negative controls showed 99.4 ± 0.9% and 19.2 ± 1.1% positivity, respectively. The results obtained suggest that strain ATCC 43504 of H. pylori does not have the capacity of adhesion to human primary gingival epithelial cells. Therefore, it can be suggested that the evaluated strain of H. pylori would participate as a transient commensal microorganism in the oral cavity. | |
dc.relation | 1. Eusebi, L., Zagari, R. & Bazzoli, F. (2014). Epidemiology of Helicobacter pylori infection. Helicobacter, (19 Suppl 1), 1-5. SSN 1523-5378 doi: 10.1111/hel.12165 | |
dc.relation | 2. Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, et al., (2017) Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. | |
dc.relation | 3. Damla Aksit Bicak, Serap Akyuz (2018). Oral Signs of Helicobacter Pylori- Review of Clinical Outcomes. Biomed Sci&Tech Res 8(2)-. BJSTR MS.ID.001635. DOI: 10.26717/ BJSTR.2018.08.001635. | |
dc.relation | 4. Yee JKC (2017). Are the view of Helicobacter pylori colonized in the oral cavity an illusion?. Experimental & Molecular Medicine. 49, e397; doi:10.1038/emm.2017.225 | |
dc.relation | 5. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Schistosomes, Liver Flukes and Helicobacter pylori. Lyon (FR): International Agency for Research on Cancer; 1994. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 61.) Recuperado de: https://www.ncbi.nlm.nih.gov/books/NBK487782/ | |
dc.relation | 6. Crow SE. (2019). Helicobacter pylori Infection. N Engl J Med. 380:1158-65. DOI: 10.1056/NEJMcp1710945 | |
dc.relation | 7. Tongtawee T, Wattanawongdon W, Simawaranon T. (2019). Effects of periodontal therapy on eradication and recurrence of Helicobacter pylori infection after successful treatment. Journal of International Medical Research. Vol. 47(2) 875–883 | |
dc.relation | 8. Adler I, Muiño A, Aguas S, Harada L, Diaz M, Lence A, et al. (2014) Helicobacter pylori and oral pathology: Relationship with the gastric infection. World Journal of Gastroenterology : WJG.;20(29):9922-35 | |
dc.relation | 9. Basic A, Enerbäcka H, Waldenströma S, Östgärda E, Suksuartb N, Dahlena G (2018). Presence of Helicobacter pylori and Campylobacter ureolyticus in the oral cavity of a Northern Thailand population that experiences stomach pain. Journal of oral microbiology. VOL. 10, 1527655. | |
dc.relation | 10. Dye BA , Kruszon-Moran D, McQuillan G. (2002) The relationship between periodontal disease attributes and Helicobacter pylori infection among adults in the United States. Am J Public Health. 92 1809-1815 | |
dc.relation | 11. Bharath TS, Reddy MS, Dhanapal R, Raj Kumar NG, Neeladri Raju P, Saraswathi T. (2014).Molecular detection and corelation of Helicobacter pylori in dental plaque and gastric biopsies of dyspeptic patients. Journal of oral and maxillofacial pathology : JOMFP.18(1):19-24 | |
dc.relation | 12. Yee JKC. (2016) Helicobacter pylori colonization of the oral cavity: A milestone discovery. World Journal of Gastroenterology. 22(2):641-8 | |
dc.relation | 13. Krzyżek, P. & Gościniak, G. (2018). Oral Helicobacter pylori: Interactions with host and microbial flora of the oral cavity. Dent Med Probl. 55(1), 75-82. doi: 10.17219/dmp/81259. | |
dc.relation | 14. Roesler, B., Rabelo, E. & Zeitune, J. (2014). Virulence Factors of Helicobacter pylori: A Review. Clinical Medicine Insights: Gastroenterology, 7, 9–17. doi: 10.4137/CGast.S13760 | |
dc.relation | 15. Oleastro M, Ménard A. (2013) The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology. 2:1110 –1134. | |
dc.relation | 16. Hu, Z., Zhang, Y., Li, Z., Yu, Y., Kang, W., Han, Y., … Sun, Y. (2016). Effect of Helicobacter pylori infection on chronic periodontitis by the change of microecology and inflammation. Oncotarget, 7(41), 66700–66712. doi:10.18632/oncotarget.11449 | |
dc.relation | 17. Sheu BS, Cheng HC, Yang YJ, Yang HP, Wu JJ. (2007): The presence of dental disease can be a risk factor for recurrent Helicobacter pylori infection after eradication therapy: a 3year follow-up. Endoscopy. 39: 942–947 | |
dc.relation | 18. Zheng P, Zhou W. Relation between periodontitis and helicobacter pylori infection. Int J Clin Exp Med. 2015 Sep 15;8(9):16741-4. eCollection 2015. | |
dc.relation | 19. Rasmussen LT, Labio RWd, Gatti LL, Silva LCd, Queiroz VFd, Smith MdAC, et al. Helicobacter pylori detection in gastric biopsies, saliva and dental plaque of Brazilian dyspeptic patients. Memorias do Instituto Oswaldo Cruz. 2010;105:326-30. | |
dc.relation | 20. Sepúlveda E, Moreno J, Spencer ML, Quilodrán S, Brethauer U, Briceño C, et al. Comparación de Helicobacter pylori en cavidad oral y mucosa gástrica de acuerdo a genotipo de virulencia (cagA y vacAm 1). Revista chilena de infectología. 2012;29:278-83. | |
dc.relation | 21. Castro-Muñoz LJ, González-Díaz CA, Muñoz-Escobar A, Tovar-Ayona BJ, Aguilar-Anguiano LM, Vargas-Olmos R, et al. Prevalence of Helicobacter pylori from the oral cavity of Mexican asymptomatic children under 5 years of age through PCR. Archives of oral biology. 2017;73:55-9. | |
dc.relation | 22. Roesler, B., Rabelo, E. & Zeitune, J. (2014). Virulence Factors of Helicobacter pylori: A Review. Clinical Medicine Insights: Gastroenterology, 7, 9–17. doi: 10.4137/CGast.S13760 | |
dc.relation | 23. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., et al. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295(5555), 683-686. doi: 10.1126/science.1067147 | |
dc.relation | 24. Backert, S. & Selbach, M. (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol, 10(8), 1573-1581. doi: 10.1111/j.1462-5822.2008.01156. | |
dc.relation | 25. Willhite, D. & Blanke, S. (2004). Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol, 6(2), 143-154. doi: 10.1046/j.1462-5822.2003.00347.x | |
dc.relation | 26. Cover, T. (2016). Helicobacter pylori Diversity and Gastric Cancer Risk. MBio, 7(1), e01869-15. doi: 10.1128/mBio.01869-15. | |
dc.relation | 27. Kao, C., Sheu, B. & Wu, J. (2016). Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomedical journal, 39(1), 14-23. doi: 10.1016/j.bj.2015.06.002 | |
dc.relation | 28. Ishijima, N., Suzuki, M., Ashida, H., Ichikawa, Y., Kanegae, Y., Saito, T., et al. (2011). BabA-mediated adherence is a potentiator of the helicobacter pylori type IV secretion system activity. The Journal of Biological Chemistry, 286(28), 25256–25264. doi: 10.1074/jbc.M111.233601 | |
dc.relation | 29. Luman W (2002) Helicobacter pylori transmission: Is it due to kissing? J R Coll Physicians Edinb 32: 275-279. | |
dc.relation | 30. Keilberg, D. & Ottemann, K. (2016). How Helicobacter pylori senses, targets and interacts with the gastric epithelium. Environ Microbiol, 18(3), 791-806. doi: 10.1111/1462-2920. | |
dc.relation | 31. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. (2000) Comparative genomics of Helicobacter pylori: Analysis of the outer membrane protein families. Infect Immun.;68:4155–4168 | |
dc.relation | 32. Oleastro M, Ménard A. (2013) The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology. 2:1110 –1134. | |
dc.relation | 33. Silva DG, Stevens RH, Macedo JMB, et al. (2009) Higher levels of salivary MUC5B and MUC7 in individuals with gastric diseases who harbor Helicobacter pylori. Arch Oral Biol. 54:86–90 | |
dc.relation | 34. Correa, P. & Piazuelo, M. (2012). The gastric precancerous cascade. Journal of digestive diseases. 13(1), 2-9. Doi: 10.1111/j.1751-2980.2011.00550.x. | |
dc.relation | 35. Ramis, I., de Moraes, E., Fernandes, M., Mendoza-Sassi, R., Rodrigues, O., Juliano, C., et al. (2012). Evaluation of diagnostic methods for the detection of Helicobacter pylori in gastric biopsy specimens of dyspeptic patients. Brazilian Journal of Microbiology, 43(3), 903–908. doi: 10.1590/S1517-83822012000300008 | |
dc.relation | 36. Leite, M. & Figueiredo, C. (2012). A method for short-term culture of human gastric epithelial cells to study the effects of Helicobacter pylori. Methods Mol Biol, 921, 61-68. doi: 10.1007/978-1-62703-005-2_9 | |
dc.relation | 37. Ryota Nomura, Yuko Ogaya, Saaya Matayoshi, Yumiko Morita and Kazuhiko Nakano. (2018). Molecular and clinical analyses of Helicobacter pylori colonization in inflamed dental pulp. BMC Oral Health (2018) 18:64 | |
dc.relation | 38. Dunne C, Dolan B, Clyne M. (2014]). Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol. 2014 May 21;20(19):5610-24. doi: 10.3748/wjg.v20.i19.5610. | |
dc.relation | 39. Bonsor DA, Sundberg EJ. (2019). Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. Adv Exp Med Biol. 2019 Apr 24. doi: 10.1007/5584_2019_359 | |
dc.relation | 40. Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ, Meyer TF. 82014). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. 2016 Feb;65(2):202-13. doi: 10.1136/gutjnl-2014-307949. | |
dc.relation | 41. Oleastro M, Ménard A. The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology. 2013;2:1110–1134. | |
dc.relation | 42. Pachathundikandi SK, Tegtmeyer N,Backert S. (2013). Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4:6, 454–474 | |
dc.relation | 43. Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM. Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on highmolecular-weight salivary mucin. Infect Immun. 1998;66:444–447 | |
dc.relation | 44. Jönsson D, Ramberg P, Demmer RT, Kebschull M, Dahlén G, Papapanou P. (2011). Gingival tissue transcriptomes in experimental gingivitis. Clin Periodontol. 38(7): 599–611. doi:10.1111/j.1600-051X.2011.01719.x. | |
dc.relation | 45. Rogers AH, Zilm PS, Diaz PI. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbondioxide- depleted environments. Microbiol. 2002;148:467–472. | |
dc.relation | 46. Eftang, L., Esbensen, Y., Tannæs, T., Bukholm, I. & Bukholm, G. (2012). Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. BMC Microbiol, 12(9), doi: 10.1186/1471-2180-12-9 | |
dc.relation | 47. Ureporn Kedjarune, Supreya Pongprerachok, Premjit Arpornmaeklong, Kiattisak Ungkusonmongkhon. Culturing primary human gingival epithelial cells: omparison of two isolation techniques. Journal of Cranio-Maxillofacial Surgery (2001) 29, 224±231 | |
dc.relation | 48. Shiba H, Venkatesh SG, Gorr SU, Barbieri G, Kurihara H, Kinane DF. Parotid secretory protein is expressed and inducible in human gingival keratinocytes. J Periodontal Res. 2005 Apr;40(2):153-7. | |
dc.relation | 49. Buskermolen JK, Reijnders CMA, Spiekstra SW, et al. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Engineering Part C, Methods. 2016;22(8):781-791. doi:10.1089/ten.tec.2016.0066 | |
dc.relation | 50. Angelova Volponi A, Kawasaki M, Sharpe PT. Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering. Journal of Dental Research. 2013;92(4):329-334. | |
dc.relation | 51. Hsueh YJ, Huang SF, Lai JY, Ma SC, Chen HC, Wu SE, Wang TK, Sun CC, Ma KS, Chen JK, Lai CH, Ma DH. Preservation of epithelial progenitor cells from collagenase-digested oral mucosa during ex vivo cultivation. Sci Rep. 2016 Nov 8;6:36266. doi:0.1038/srep36266. PubMed PMID: 27824126; PubMed Central | |
dc.relation | 52. Ren HJ, Zhang CL, Liu RD, Li N, Li XG, Xue HK, Guo Y, Wang ZQ, Cui J, Ming L: Primary cultures of mouse small intestinal epithelial cells using the dissociating enzyme type I collagenase and hyaluronidase. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 2017, 50(5):e5831. | |
dc.relation | 53. Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON, Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc (2010) 5:702-713 | |
dc.relation | 54. Hannan NR, Segeritz CP, Touboul T, Vallier L, Production of hepatocyte-like cells from human pluripotent stem cells.Nat Protoc (2013) 8:430-437 | |
dc.relation | 55. Williams GM, Weisburger EK, Weisburger JH: Isolation and long-term cell culture of epithelial-like cells from rat liver. Experimental cell research 1971, 69(1):106-112. | |
dc.relation | 56. Odenbreit, S.; Swoboda, K.; Barwig, I.; Ruhl, S.; Borén, T.; Koletzko, S.; Haas, R. Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect. Immun. 2009, 77, 3782–3790. Biology 2013, 2 1126 | |
dc.relation | 57. Oleastro M, Ménard A. The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis. Biology (Basel). 2013 Aug 27;2(3):1110-34. doi:10.3390/biology2031110. | |
dc.relation | 58. Falush, D.; Kraft, C.; Taylor, N.S.; Correa, P.; Fox, J.G.; Achtman, M.; Suerbaum, S. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age. Proc. Natl. Acad. Sci. USA 2001, 98, 15056–15061 | |
dc.relation | 59. Suerbaum, S.; Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 2007, 5, 441–452. | |
dc.relation | 60. Muotiala, A.; Helander, I.M.; Pyhala, L.; Kosunen, T.U.; Moran, A.P. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun. 1992, 60, 1714–1716. | |
dc.relation | 61. Monteiro, M.A.; Appelmelk, B.J.; Rasko, D.A.; Moran, A.P.; Hynes, S.O.; MacLean, L.L.; Chan, K.H.; Michael, F.S.; Logan, S.M.; O’Rourke, J.; et al. Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H-pylori Sydney strain, H-pylori P466 carrying sialyl Lewis X, and H-pylori UA915 expressing Lewis B—Classification of H-pylori lipopolysaccharides into glycotype families. Eur. J. Biochem. 2000, 267, 305–320. | |
dc.relation | 62. Edwards, N.J.; Monteiro, M.A.; Faller, G.; Walsh, E.J.; Moran, A.P.; Roberts, I.S.; High, N.J. Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol. Microbiol. 2000, 35, 1530–1539. | |
dc.relation | 63. Osaki, T.; Yamaguchi, H.; Taguchi, H.; Fukuda, M.; Kawakami, H.; Hirano, H.; Watanabe, S.; Takagi, A.; Kamiya, S. Establishment and characterisation of a monoclonal antibody to inhibit adhesion of Helicobacter pylori to gastric epithelial cells. J. Med. Microbiol. 1998, 47, 505–512. | |
dc.relation | 64. Fowler, M.; Thomas, R.J.; Atherton, J.; Roberts, I.S.; High, N.J. Galectin-3 binds to Helicobacter pylori O-antigen: It is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell. Microbiol. 2006, 8, 44–54. | |
dc.relation | 65. Tamai R, Kobayashi-Sakamoto M, Kiyoura Y. Extracellular galectin-1 enhances adhesion to and invasion of oral epithelial cells by Porphyromonas gingivalis. Can J Microbiol. 2018 Jul;64(7):465-471. doi: 10.1139/cjm-2017-0461. Epub 2018 | |
dc.relation | 66. Ilver, D.; Arnqvist, A.; Ögren, J.; Frick, I.M.; Kersulyte, D.; Incecik, E.T.; Berg, D.E.; Covacci, A.; Engstrand, L.; Borén, T. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 1998, 279, 373–377. | |
dc.relation | 67. Borén, T.; Falk, P.; Roth, K.A.; Larson, G.; Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993, 262, 1892–1895. | |
dc.relation | 68. Aspholm-Hurtig, M.; Dailide, G.; Lahmann, M.; Kalia, A.; Ilver, D.; Roche, N.; Vikström, S.; Lindén, S.; Bäckström, A.; Lundberg, C.; et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 2004, 305, 519–522. | |
dc.relation | 69. Sakamoto, S.; Watanabe, T.; Tokumaru, T.; Takagi, H.; Nakazato, H.; Lloyd, K.O. Expression of Lewis a, Lewis b Lewis x, Lewis y and sialyl-Lewis x blood group antigens in human gastric carcinoma and in normal gastric tissue. Cancer Res. 1989, 49, 745–752 | |
dc.relation | 70. Oleastro, M.; Cordeiro, R.; Ferrand, J.; Nunes, B.; Lehours, P.; Carvalho-Oliveira, I.; Mendes, A.L.; Monteiro, L.; Mégraud, F.; Ménard, A. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J. Infect. Dis. 2008, 198, 1379–1387. | |
dc.relation | 71. Oleastro M, Monteiro L, Lehours P, Mégraud F, Menard A. Identification of markers for Helicobacter pylori strains isolated from children with peptic ulcer disease by suppressive subtractive hybridization, Infect Immun , 2006, vol. 74 (pg. 4064-74) | |
dc.relation | 72. Peck, B.; Ortkamp, M.; Diehl, K.D.; Hundt, E.; Knapp, B. Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucl. Acids Res. 1999, 27, 3325–3333 | |
dc.relation | 73. Yamaoka, Y.; Kita, M.; Kodama, T.; Imamura, S.; Ohno, T.; Sawai, N.; Ishimaru, A.; Imanishi, J.; Graham, D.Y. Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. Gastroenterology 2002, 123, 1992–2004. | |
dc.relation | 74. Yamaoka, Y.; Kwon, D.H.; Graham, D.Y. A M(r) 34,000 proinflammatory outer membrane protein (OipA) of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 2000, 97, 111–133. | |
dc.relation | 75. Yamaoka, Y.; Kikuchi, S.; El-Zimaity, H.M.T.; Gutierrez, O.; Osato, M.S.; Graham, D.Y. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 2002, 123, 414–424. | |
dc.relation | 76. Dossumbekova, A.; Prinz, C.; Mages, J.; Lang, R.; Kusters, J.G.; van Vliet, A.H.; Reindl, W.; Backert, S.; Saur, D.; Schmid, R.M.; et al. Helicobacter pylori HopH (OipA) and bacterial pathogenicity: Genetic and functional genomic analysis of hopH gene polymorphisms. J. Infect. Dis. 2006, 194, 1346–1355. | |
dc.relation | 77. Teymournejad, O.; Mobarez, A.M.; Hassan, Z.M.; Moazzeni, S.M.; Yakhchali, B.; Eskandari, V. In silico prediction of exposure amino acid sequences of outer inflammatory protein A of Helicobacter pylori for surface display on Escherichia coli. Indian J. Hum. Genet. 2012, 18, 83–86. | |
dc.relation | 78. Alm, R.A.; Bina, J.; Andrews, B.M.; Doig, P.; Hancock, R.E.W.; Trust, T.J. Comparative genomics of Helicobacter pylori: Analysis of the outer membrane protein families. Infect. Immun. 2000, 68, 4155–4168. | |
dc.relation | 79. De Jonge, R.; Durrani, Z.; Rijpkema, S.G.; Kuipers, E.J.; van Vliet, A.H.; Kusters, J.G. Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J. Med. Microbiol. 2004, 53, 375–379. | |
dc.relation | 80. Sugimoto, M.; Ohno, T.; Graham, D.; Yamaoka, Y. Helicobacter pylori outer membrane proteins on gastric mucosal interleukin 6 and 11 expression in Mongolian gerbils. J. Gastroenterol. Hepatol. 2011, 26, 1677–1684. | |
dc.relation | 81. Odenbreit, S.; Till, M.; Hofreuter, D.; Faller, G.; Haas, R. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 1999, 31, 1537–1548. | |
dc.relation | 82. Senkovich, O.A.; Yin, J.; Ekshyyan, V.; Conant, C.; Traylor, J.; Adegboyega, P.; McGee, D.J.; Rhoads, R.E.; Slepenkov, S.; Testerman, T.L. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect. Immun. 2011, 79, 3106–3116. | |
dc.relation | 83. Annoni G, Colombo M, Cantaluppi MC, Khlat B, Lampertico P, Rojkind M. 1989. Serum type III procollagen peptide and laminin (Lam‐P1) detect alcoholic hepatitis in chronic alcohol abusers. Hepatology 9:693–697. | |
dc.relation | 84. Issa S, Moran AP, Ustinov SN, Lin JH, Ligtenberg AJ, Karlsson NG. O-linked oligosaccharides from salivary agglutinin: Helicobacter pylori binding sialyl-Lewis x and Lewis b are terminating moieties on hyperfucosylated oligo-N-acetyllactosamine. Glycobiology. 2010;20:1046–1057 | |
dc.relation | 85. Kenny DT, Skoog EC, Lindén SK, Struwe WB, Rudd PM, Karlsson NG. Presence of terminal N-acetylgalactosamineβ1-4N-acetylglucosamine residues on O-linked oligosaccharides from gastric MUC5AC: involvement in Helicobacter pylori colonization? Glycobiology. 2012;22:1077–1085. | |
dc.relation | 86. Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin TH, Sutton P, McGuckin MA. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 2009 Oct;5(10):e1000617. doi: 10.1371/journal.ppat.1000617. | |
dc.relation | 87. Hori Y, Sugiyama H, Soma T, Nishida K. Expression of membrane-associated mucins in cultivated human oral mucosal epithelial cells. Cornea. 2007 Oct;26(9 Suppl 1):S65-9. PubMed PMID: 17881919. | |
dc.relation | 88. Ukkonen H, Pirhonen P, Herrala M, Mikkonen JJ, Singh SP, Sormunen R, Kullaa AM. Oral mucosal epithelial cells express the membrane anchored mucin MUC1. Arch Oral Biol. 2017 Jan;73:269-273. doi: 10.1016/j.archoralbio.2016.10.019. | |
dc.relation | 89. Walz, A.; Odenbreit, S.; Stühler, K.; Wattenberg, A.; Meyer, H.E.; Mahdavi, J.; Borén, T.; Ruhl, S. Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics 2009, 9, 1582–1592 | |
dc.relation | 90. . Aspholm, M.; Olfat, F.O.; Nordén, J.; Sondén, B.; Lundberg, C.; Sjöström, R.; Altraja, S.; Odenbreit, S.; Haas, R.; Wadström, T.; et al. SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog. 2006, 2, e110. | |
dc.relation | 91. Walz, A.; Odenbreit, S.; Mahdavi, J.; Boren, T.; Ruhl, S. Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 2005, 15, 700–708. | |
dc.relation | 92. Yamaoka, Y., Ojo, O., Fujimoto, S., Odenbreit, S., Haas, R., Gutierrez, O., et al. (2006). Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55, 775–781. doi: 10.1136/gut.2005.083014 | |
dc.relation | 93. Peek,R.M.,andBlaser,M.J.(2002). Helicobacter pylori and gastro intestinal tract adenocarcinomas. Nat.Rev.Cancer 2,28–37.doi:10.1038/nrc703 | |
dc.relation | 94. Testerman TL, McGee DJ, Mobley HLT. Adherence and Colonization. In: Mobley HLT, Mendz GL, Hazell SL, editors. Helicobacter pylori: Physiology and Genetics. Washington (DC): ASM Press; 2001. Chapter 34. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2437/ | |
dc.relation | 95. Raju D, Rizzuti D, Jones NL. Cell culture-based assays to test for bacterial adherence and internalization. Methods Mol Biol. 2012;921:69-76. PubMed PMID: 23015493 | |
dc.relation | 96. Amieva MR, Salama NR, Tompkins LS, Falkow S (2002) Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell Microbiol 4:677–690 | |
dc.relation | 97. Terebiznik MR et al (2006) Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect Immun 74:6599–6614 | |
dc.relation | 98. Liu, H., Semino-Mora, C., & Dubois, A. (2012). Mechanism of H. pylori intracellular entry: an in vitro study. Frontiers in cellular and infection microbiology, 2, 13. doi:10.3389/fcimb.2012.00013 | |
dc.relation | 99. Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Prim. 3, 17038 (2017) | |
dc.relation | 100. Andersen R. N., Ganeshkumar N., Kolenbrander P. E. Helicobacter pylori adheres selectively to Fusobacteriumspp. Oral Microbiol. Immunol. 1998;13:51–54. | |
dc.relation | 101. Nakazawa T., Ishibashi M., Konishi H., Takemoto T., Shigeeda M., Kochiyama T. Hemagglutinating activity of Campylobacter pylori. Infect. Immun. 1989;57:989–991. | |
dc.relation | 102. Chitsazi MT, Fattahi E, Farahani RM, Fattahi S. Helicobacter pylori in the dental plaque: is it of diagnostic value for gastric infection? Med Oral Patol Oral Cir Bucal. 2006 Jul 1;11(4):E325-8. | |
dc.relation | 103. Suk FM, Chen SH, Ho YS, Pan S, Lou HY, Chang CC, Hsieh CR, Cheng YS, Lien GS. It is difficult to eradicate Helicobacter pylori from dental plaque by triple therapy. Zhonghua Yi Xue Za Zhi (Taipei). 2002 Oct;65(10):468-73. | |
dc.relation | 104. Assumpção, M. B., Martins, L. C., Melo Barbosa, H. P., Barile, K. A., de Almeida, S. S., Assumpção, P. P., & Corvelo, T. C. (2010). Helicobacter pylori in dental plaque and stomach of patients from Northern Brazil. World journal of gastroenterology, 16(24), 3033-9. | |
dc.relation | 105. Momtaz H, Souod N, Dabiri H, Sarshar M. Study of Helicobacter pylori genotype status in saliva, dental plaques, stool and gastric biopsy samples. World J Gastroenterol. 2012 May 7;18(17):2105-11. doi: 0.3748/wjg.v18.i17.2105. | |
dc.relation | 106. Bago I, Bago J, Plečko V, Aurer A, Majstorović K, Budimir A. The effectiveness of systemic eradication therapy against oral Helicobacter pylori. J Oral Pathol Med. 2011 May;40(5):428-32. doi: 10.1111/j.1600-0714.2010.00989.x. Epub 2010 Dec 28. | |
dc.relation | 107. Gao J, Li Y, Wang Q, Qi C, Zhu S. Correlation between distribution of Helicobacter pylori in oral cavity and chronic stomach conditions. J Huazhong Univ Sci Technolog Med Sci. 2011 Jun;31(3):409-412. doi: 10.1007/s11596-011-0391-6. Epub 2011 Jun 14.. | |
dc.relation | 108. Song Q, Haller B, Ulrich D, Wichelhaus A, Adler G, Bode G. Quantitation of Helicobacter pylori in dental plaque samples by competitive polymerase chain reaction. J Clin Pathol. 2000 Mar;53(3):218-22. | |
dc.relation | 109. Krajden, M. Fuksa, J. Anderson et al., “Examination of human stomach biopsies, saliva, and dental plaque for Campylobacter pylori,” Journal of Clinical Microbiology, vol. 27, no. 6, pp. 1397– 1398, 1989. | |
dc.relation | 110. Parsonnet J, Shmuely H, Haggerty T. Fecal and oral shedding of Helicobacter pylori from healthy infected adults. JAMA. 1999 Dec 15;282(23):2240-5. | |
dc.relation | 111. Agarwal, S., & Jithendra, K. D. (2012). Presence of Helicobacter pylori in subgingival plaque of periodontitis patients with and without dyspepsia, detected by polymerase chain reaction and culture. Journal of Indian Society of Periodontology, 16(3), 398-403. | |
dc.relation | 112. Savoldi, M. G. Marinone, R. Negrini, D. Facchinetti, A. Lanzini, and P. L. Sapelli, “Absence of Helicobacter pylori in dental plaque determined by immunoperoxidase,” Helicobacter, vol. 3, no. 4, pp. 283–288, 1998. | |
dc.relation | 113. Checchi, P. Felice, C. Acciardi et al., “Absence of Helicobacter pylori in dental plaque assessed by stool test,” American Journal of Gastroenterology, vol. 95, no. 10, pp. 3005–3006, 2000 | |
dc.relation | 114. Mahdavi, J., Sondén, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., … Borén, T. (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science (New York, N.Y.), 297(5581), 573–578. doi:10.1126/science.1069076 | |
dc.relation | 115. García C, Apolinaria, Barra T, Ricardo, Delgado Sch, Carolina, Kawaguchi P, Fernando, Trabal F, Natalia, Montenegro H, Sonia, & González C, Carlos. (2006). Genotipificación de aislados clínicos de Helicobacter pylori en base a genes asociados a virulencia cagA, vacA y babA2: Primer aislamiento de una cepa babA2 positiva en pacientes chilenos. Revista médica de Chile, 134(8), 981-988. https://dx.doi.org/10.4067/S0034-98872006000800006 | |
dc.relation | 116. Marshall, B. J., H. Royce, D. I. Annear, C. S.Goodwin, J. W. Pearman, J. R. Warren, and J. A. Armstrong. 1984. Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Lett. 2583-88 | |
dc.relation | 117. Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM. Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect Immun.1998 Feb;66(2):444-7. PubMed PMID: 9453593; PubMed Central PMCID: PMC107925. | |
dc.relation | 118. Shao, S. H., Wang, H., Chai, S. G., & Liu, L. M. (2005). Research progress on Helicobacter pylori outer membrane protein. World journal of gastroenterology, 11(20), 3011–3013. doi:10.3748/wjg.v11.i20.3011 | |
dc.relation | 119. Yamaoka Y, Kita M, Kodama T, Imamura S, Ohno T, Sawai N, Ishimaru A, Imanishi J, Graham DY. Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. Gastroenterology. 2002;123:1992–2004. | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Diseño de un modelo in vitro de células epiteliales primarias gingivales humanas para evaluar infectividad de Helicobacter pylori (ATCC 43504) | |