dc.contributor | Cándela Soto, Angélica María | |
dc.creator | Solognier Balcacer, Sallyslain Gisley | |
dc.date.accessioned | 2021-02-15T15:02:41Z | |
dc.date.available | 2021-02-15T15:02:41Z | |
dc.date.created | 2021-02-15T15:02:41Z | |
dc.date.issued | 2021-02-02 | |
dc.identifier | Solognier Balcacer, S. G. (2020). Estudio de caso : Energía a partir de plantas vivas Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo. Universidad Santo Tomás. | |
dc.identifier | http://hdl.handle.net/11634/32130 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.description.abstract | In the face of the constant demand for electrical energy, various technologies are studied to reduce dependence on conventional energies, which have led to a breaking point in environmental conditions. Thus, recent biotechnologies include microbial fuel cells applied to plants, which will be the mainstay of this research. Likewise, the aim is to carry out a scientometric study with the Scopus database, which allows the comparison of documents focused on research regarding the production of clean electrical energy from microbial fuel cells in plants (P-MFC) to analyze the factors that mainly encompass the correct functioning of a P-MFC and study the possibility of implementing the MFC in isolated plants within a closed microcosm, in other words, terrarium. This research seeks to propose an ideal prototype based on the previously compared results of various authors; the analysis prospects possible scenarios in the implementation of self-sustaining biotechnology. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Pregrado de Ingeniería Ambiental | |
dc.publisher | Facultad de Ingeniería Ambiental | |
dc.relation | Arends, J. B. A., Blondeel, E., Tennison, S. R., Boon, N., & Verstraete, W. (2012). Suitability of granular carbon as an anode material for sediment microbial fuel cells. Journal of Soils and Sediments, 12(7), 1197–1206. https://doi.org/10.1007/s11368-012-0537-6 | |
dc.relation | Arends, J. B. A., Speeckaert, J., Blondeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., … Boon, N. (2014). Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 98(7), 3205–3217. https://doi.org/10.1007/s00253-013-5328-5 | |
dc.relation | Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487 | |
dc.relation | Bagshaw Ward, N. (1899). Library of The New York Botanical Garden (Second). London. | |
dc.relation | Brinker, A. (2012). Morphogenesis of the Terrarium. The American Biology Teacher, 74(7), 521– 524. https://doi.org/10.1525/abt.2012.74.7.17 | |
dc.relation | Cabezas, A. (2010). Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells fueled by Root Exudates Doctoral. Microbiology, PhD, 184 | |
dc.relation | Cabezas, A., Pommerenke, B., Boon, N., & Friedrich, M. W. (2015). Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate- driven microbial fuel cells in rice field soil. Environmental Microbiology Reports, 7(3), 489– 497. https://doi.org/10.1111/1758-2229.12277 | |
dc.relation | Chicas, S. D., Sivasankar, V., Omine, K., Valladarez, J., & Mylsamy, P. (2018). Plant microbial fuel cell technology: Developments and limitations. En Microbial Fuel Cell Technology for Bioelectricity (pp. 49–65). https://doi.org/10.1007/978-3-319-92904-0_3 | |
dc.relation | China, F. of. (2000). CANNA Linnaeus. Smithsonian, 510650–510650. | |
dc.relation | Clark, M. A., Choi, J., & Douglas, M. (2018). Biology 2e. Houston, Texas. Damen, | |
dc.relation | Damen, T. H. J., van der Burg, W. J., Wiland-Szymańska, J., & Sosef, M. S. M. (2018). Taxonomic novelties in African Dracaena (Dracaenaceae). Blumea: Journal of Plant Taxonomy and Plant Geography, 63(1), 31–53. https://doi.org/10.3767/blumea.2018.63.01.05 | |
dc.relation | Daniels, F. (1972). Photochemical Effects of Sunlight. Biophysical Journal, 12(7), 723–727. https://doi.org/10.1016/S0006-3495(72)86116-2 | |
dc.relation | French, C. S. (1952). Photosynthesis and related processes. Physics Today, 5(3), 20–21. https://doi.org/10.1063/1.3067511 | |
dc.relation | Gómora-Hernández, J. C., Serment-Guerrero, J. H., Carreño-De-león, M. C., & Flores-Alamo, N. (2020). Voltage production in a plant-microbial fuel cell using Agapanthus africanus | Producción de voltaje en una celda de combustible microbiana vegetal utilizando Agapanthus africanus. Revista Mexicana de Ingeniera Quimica, 19(1), 227–237. https://doi.org/10.24275/rmiq/IA542 | |
dc.relation | Gilani, S. R., Yaseen, A., Zaidi, S. R. A., Zahra, M., & Mahmood, Z. (2016). Photocurrent generation through plant microbial fuel cell by varying electrode materials. Journal of the Chemical Society of Pakistan, 38(1), 17–27. | |
dc.relation | Gul, M. M., & Ahmad, K. S. (2019). Biosensors and Bioelectronics Bioelectrochemical systems : Sustainable bio-energy powerhouses. (August). | |
dc.relation | Gulamhussein, M., & Randall, D. G. (2020). Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, https://doi.org/10.1016/j.jwpe.2020.101653 38. | |
dc.relation | Habibul, N., Hu, Y., Wang, Y. K., Chen, W., Yu, H. Q., & Sheng, G. P. (2016). Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science and Technology, 50(7), 3882–3889. https://doi.org/10.1021/acs.est.5b06376 | |
dc.relation | Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/j.biortech.2009.12.124 | |
dc.relation | Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 104, 417–423. https://doi.org/10.1016/j.biortech.2011.11.005 | |
dc.relation | Helder, Marjolein. (2012). Design criteria for the Plant-Microbial Fuel Cell Electricity generation with living plants – from lab to application. Recuperado de https://www.plant- e.com/en/informatie/ | |
dc.relation | Helder, Marjolein, Strik, D. P. B. T. B., Timmers, R. A., Raes, S. M. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass and Bioenergy, 51(0), 1–7. https://doi.org/10.1016/j.biombioe.2012.10.011 | |
dc.relation | Hublikar, L., Ganachari, S. V., & Yaradoddi, J. S. (2019). Green Energy Generation from Microbial Fuel Cells. En L. M. T. Martínez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of Ecomaterials (Vol. 1, pp. 1207–1220). https://doi.org/10.1007/978-3-319- 68255-6_195 | |
dc.relation | Jung, S. P., & Pandit, S. (2018). Important factors influencing microbial fuel cell performance. En Biomass, Biofuels, Biochemicals: Microbial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and Remediation. https://doi.org/10.1016/B978-0-444-64052- 9.00015-7 | |
dc.relation | Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2019.05.016 110(September 2018), 402–414 | |
dc.relation | Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology and Biotechnology, 79(1), 43–49. https://doi.org/10.1007/s00253-008-1410-9 | |
dc.relation | Klaisongkram, N., & Holasut, K. (2015). Electricity generation of Plant Microbial Fuel Cell (PMFC) using Cyperus Involucratus R. 42(1), 117–124. https://doi.org/10.14456/kkuenj.2015.2 | |
dc.relation | Kothapalli, A. (2013). Sediment Microbial Fuel Cell as Sustainable Power Resource. UM Digital Commons, (December), 1–50. | |
dc.relation | Kumar, S. S., Kumar, V., Kumar, R., Malyan, S. K., & Pugazhendhi, A. (2019). Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 255(February), 115682. https://doi.org/10.1016/j.fuel.2019.115682 | |
dc.relation | Kwak, J. Il, & An, Y. J. (2016). The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environmental Research, 151, 368– 382. https://doi.org/10.1016/j.envres.2016.08.005 | |
dc.relation | Liu, B., Ji, M., & Zhai, H. (2018). Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations. Chemosphere, 209, 739–747. https://doi.org/10.1016/j.chemosphere.2018.06.122 | |
dc.relation | Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016 | |
dc.relation | Long, S. P. (1999). Environmental Responses. C4 Plant Biology, 215–249. https://doi.org/10.1016/b978-012614440-6/50008-2 | |
dc.relation | Lu, L., Xing, D., & Ren, Z. J. (2015). Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology, 195, 115–121. https://doi.org/10.1016/j.biortech.2015.05.098 | |
dc.relation | Md Khudzari, J., Kurian, J., Gariépy, Y., Tartakovsky, B., & Raghavan, G. S. V. (2018). Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass and Bioenergy, 109(December 2017), 1–9. https://doi.org/10.1016/j.biombioe.2017.12.013 | |
dc.relation | Moqsud, M. A., Gazali, T. A., Omine, K., & Nakata, Y. (2017). Green electricity by water plants in organic soil and marine sediment through microbial fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(2), 160–165. https://doi.org/10.1080/15567036.2016.1159263 | |
dc.relation | Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76(March), 81–89. https://doi.org/10.1016/j.rser.2017.03.064 | |
dc.relation | Nurture Nature Center. Terrarium Habitats. | |
dc.relation | Pamintuan, K. R. S., Calma, M. A. L., Feliciano, K. A. D., & Lariba, K. J. P. D. (2020). Potential of Bioelectricity Generation in Plant-Microbial Fuel Cells Growing House Plants. IOP Conference Series: Earth and Environmental Science, 505(1). https://doi.org/10.1088/1755- 1315/505/1/012043 | |
dc.relation | Pamintuan, K. R. S., Clomera, J. A. A., Garcia, K. V., Ravara, G. R., & Salamat, E. J. G. (2018). Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes). IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012054 | |
dc.relation | Regmi, R., Nitisoravut, R., Charoenroongtavee, S., Yimkhaophong, W., & Phanthurat, O. (2018). Earthen Pot-Plant Microbial Fuel Cell Powered by Vetiver for Bioelectricity Production and Wastwater Treatment. 江苏高教, 2(April 2017), 6–11. | |
dc.relation | Salinas, L. F. C., Ochoa, G. V., & Cardenas, Y. E. (2018). A scientometric analysis of the investigation of biomass gasification environmental impacts from 2001 to 2017. International Journal of Energy Economics and Policy, 8(5), 223–229. | |
dc.relation | Sarma, P. J., & Mohanty, K. (2018). Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. Journal of Bioscience and Bioengineering, 126(3), 404– 410. https://doi.org/10.1016/j.jbiosc.2018.03.009 | |
dc.relation | Sarma, P. J., & Mohanty, K. (2019). An Insight into Plant Microbial Fuel Cells. Bioelectrochemical Interface Engineering, 137–148. https://doi.org/10.1002/9781119611103.ch8 | |
dc.relation | Sivasankar, V., Mylsamy, P., & Omine, K. (2018). Microbial fuel cell technology for bioelectricity. Microbial Fuel Cell Technology for Bioelectricity, 1–311. https://doi.org/10.1007/978-3-319-92904-0 | |
dc.relation | Sophia, A. C., & Sreeja, S. (2017). Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments, 21, 59–66. https://doi.org/10.1016/j.seta.2017.05.001 | |
dc.relation | Strik, D. P. B. T. B., Hamelers (Bert), H. V. M., Snel, J. F. H., & Buisman, C. J. N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876. https://doi.org/10.1002/er.1397 | |
dc.relation | Strik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29(1), 41–49. https://doi.org/10.1016/j.tibtech.2010.10.001 | |
dc.relation | Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, Biotechnology and Biochemistry, 74(6), 1271–1273. https://doi.org/10.1271/bbb.90852 | |
dc.relation | Tamura, M. N., Smith, W. W., Hooker, J. D., & Smith, W. W. (2000). 38. CHLOROPHYTUM Ker Gawler, Bot. Mag. 27: t. 1071. 1807. 3–5. | |
dc.relation | Tapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2017). Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecological Engineering, 108(November 2016), 203–210. https://doi.org/10.1016/j.ecoleng.2017.08.017 | |
dc.relation | Timmers, R. A., Strik, D. P. B. T. B., Arampatzoglou, C., Buisman, C. J. N., & Hamelers, H. V. M. (2012). Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresource Technology, 108, 60–67. https://doi.org/10.1016/j.biortech.2011.10.088 | |
dc.relation | Timmers, Ruud A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., Schulz, S., Schloter, M., … Buisman, C. (2012). Microbial community structure elucidates performance of glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 94(2), 537–548. https://doi.org/10.1007/s00253-012-3894-6 | |
dc.relation | Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Long- term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 86(3), 973–981. https://doi.org/10.1007/s00253-010-2440-7 | |
dc.relation | Timmers, Ruud A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 51, 60–67. https://doi.org/10.1016/j.biombioe.2013.01.002 | |
dc.relation | Tou, I., Azri, Y. M., Sadi, M., Lounici, H., & Kebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 947–959. https://doi.org/10.1080/15435075.2019.1650049 | |
dc.relation | Venkata Mohan, S., Mohanakrishna, G., & Chiranjeevi, P. (2011). Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 102(14), 7036– 7042. https://doi.org/10.1016/j.biortech.2011.04.033 | |
dc.relation | Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001 | |
dc.relation | Wang, Y., Wang, J., Song, X., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697–702. https://doi.org/10.1016/j.biortech.2016.09.116 | |
dc.relation | Wetser, K., Dieleman, K., Buisman, C., & Strik, D. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649. https://doi.org/10.1016/j.apenergy.2016.10.122 | |
dc.relation | Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543–550. https://doi.org/10.1016/j.biombioe.2015.11.006 | |
dc.relation | Wetser, Koen. (2016). Electricity from wetlands Technology - Technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode. | |
dc.relation | Wetser, Koen, Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 137, 151–157. https://doi.org/10.1016/j.apenergy.2014.10.006 | |
dc.relation | Widharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2020). Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403 | |
dc.relation | Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007 | |
dc.relation | Yoon, T. H., Song, H. J., Jung, W. Y., Kim, J. E., Kim, K. J., Kim, H. H., … Kim, H. J. (2018). Monitoring Plant Health Using a Plant Microbial Fuel Cell. Bulletin of the Korean Chemical Society, 39(10), 1193–1197. https://doi.org/10.1002/bkcs.11575 | |
dc.relation | Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials. Chemical Engineering Journal, 229, 364–370. https://doi.org/10.1016/j.cej.2013.06.023 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Estudio de caso sobre la energía a partir de plantas vivas y propuesta de prototipo | |