dc.contributorhttps://orcid.org/0000-0002-8401-4949
dc.contributorhttps://orcid.org/0000-0002-4471- 3980
dc.contributorhttps://scholar.google.com/citations? hl=es&user=_mObTPkAAAAJ
dc.contributorhttps://scholar.google.com/citations? user=095RddUAAAAJ&hl=en
dc.contributorhttp://scienti.colciencias.gov.co:8081 /cvlac/visualizador/generarCurriculo Cv.do?cod_rh=0000855847
dc.contributorhttp://scienti.colciencias.gov.co:8081 /cvlac/visualizador/generarCurriculo Cv.do?cod_rh=0000380938
dc.creatorGuarnizo Marin, José Guillermo
dc.creatorCalderon Chavez, Juan Manuel
dc.date.accessioned2020-04-20T17:18:02Z
dc.date.accessioned2022-09-28T14:35:11Z
dc.date.available2020-04-20T17:18:02Z
dc.date.available2022-09-28T14:35:11Z
dc.date.created2020-04-20T17:18:02Z
dc.date.issued2019-08
dc.identifierhttp://hdl.handle.net/11634/22654
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3661674
dc.description.abstractIn mobile robotics applications, path planning is a critical point, since the selection of the wrong path can lead to problems that affect the performance of the robot behavior such as loss of time, unnecessary energy expenditure, damage to the robot, among others. Likewise, in the field of service robotics, it is sought that the robot adapts to environments where it must interact with people unfamiliar with robotics topics, so it is intended that the robot be autonomous in its perception and processing of the information, since the addition of external sensors can pose a problem for the end user and discourage the use of this type of solution. For this the architectures with local perception are more suitable, this refers to the fact that the robot will have its own sensors to obtain information from the environment where it interacts. In social robotics, the mobile robot must move through previously known places, so it is possible that the robot can obtain prior information about the environment through maps, as well as using localization tools such as odometry. However, it is necessary to use techniques that allow you to obtain an optimal route in the face of different possible trajectories, as well as avoid obstacles or find a solution to unexpected inconveniences, such as the appearance of blockages in the previously obtained trajectory. In the following research project proposal, the use of bio-inspired techniques is proposed in order to design optimal trajectories for mobile robots with local perception. This implies that although the robot may have a map of the environment where it must move, it must have its own sensors for location purposes. Likewise, the robot must evade obstacles and plan a new path in case of problems in the work environment.
dc.relationM. Li, R. Jiang, S. S. Ge y T. H. Lee, «Role playing learning for socially concomitant mobile robot navigation,» CAAI Transactions on Intelligence Technology, vol. 3, nº 1, pp. 49-58, 2018.
dc.relationJ. G. Guarnizo, M. Mellado, C. Y. Low y F. Blanes, «Architecting centralized coordination of soccer robots based on principle solution,» Advanced Robotics, vol. 29, nº 15, pp. 989-1004, 2015.
dc.relationG. Zhuang, S. Chen, J. Gu y K. Huang, «A Real-Time Embedded Localization in Indoor Environment Using LiDAR Odometry,» de Embedded Systems Technology. ESTC 2017, Shenyang, China, 2017
dc.relationJ. K. Goyal y K. Nagla, «A new approach of path planning for mobile robots,» de 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), New Delhi, India, 2014.
dc.relationK. Cho, Y. Choi y S. Oh, «Reactive controller synthesis for UAV mission planning,» de 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, South Korea, 2017.
dc.relationB. Li, H. Liu y W. Su, «Topology optimization techniques for mobile robot path planning,» Applied Soft Computing Journal, vol. 78, pp. 528-544, 2019.
dc.relationK. L. Koay, D. S. Syrdal, M. Ashgari-Oskoei, M. L. Walters y K. Dautenhahn, «Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot,» International Journal of Social Robotics, vol. 6, nº 4, p. 469–488, 2014.
dc.relationR. Hashim y H. Yussof, «Feasibility of care robots for children with special needs: A review,» de IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Ottawa, ON, Canada, 2017.
dc.relationN. Ramoly, A. Bouzeghoub y B. Finance, «A Framework for Service Robots in Smart Home: An Efficient Solution for Domestic Healthcare,» IRBM, vol. 39, nº 6, pp. 413-420, 2018
dc.relationF. Al-Turjman, M. Karakoc y M. Gunay, «Path planning for mobile DCs in future cities,» Annals of Telecommunications, vol. 72, nº 3-4, p. 119–129, 2017.
dc.relationN. Geng, Q. Meng, D. Gong y P. W. H. Chung, «How Good are Distributed Allocation Algorithms for Solving Urban Search and Rescue Problems? A Comparative Study With Centralized Algorithms,» IEEE Transactions on Automation Science and Engineering, vol. 16, nº 1, pp. 478-485, 2019
dc.relationY. Yang, J. Pan y W. Wan, «Survey of optimal motion planning,» IET Cyber-systems and Robotics, vol. 1, nº 1, pp. 13-19, 2019.
dc.relationA. Dai, X. Zhou y X. Liu, «Design and Simulation of a Genetically Optimized Fuzzy Immune PID Controller for a Novel Grain Dryer,» IEEE Access, vol. 5, pp. 14981- 14990, 2017.
dc.relationH. Duan, P. Li, Y. Shi, X. Zhang y C. Sun, «Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning,» Transactions on Education, vol. 58, nº 4, pp. 276-281, 2015.
dc.relationL. F. Niño Vasquez, F. F. Muñoz Mopan, C. E. Prieto Salazar y J. G. Guarnizo, «Applications of Artificial Immune Systems in Agents,» de Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive Technologies, IGI Global, 2009, pp. 99-122.
dc.relationD. Chen, S. Li, J. Wang, Y. Feng y Y. Liu, «A multi-objective trajectory planning method based on the improved immune clonal selection algorithm,» Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 431-442, 2019.
dc.relationJ. G. Guarnizo y M. Mellado, «Centralized Robot Soccer Architecture Based on Roles,» Revista Iberoamericana de Automática e Informática Industrial, vol. 13, nº 3, pp. 370-380, 2016.
dc.relationJ. G. Guarnizo, C. Trujillo y N. Diaz, «Robot Soccer: Origins, Federations, Leagues and Research,» Ingenium, vol. 17, nº 33, pp. 54-67, 2015.
dc.relationR. Pérula-Martínez, Á. Castro-González, M. Malfaz, F. Alonso-Martín y M. A. Salichs, «Bioinspired decision-making for a socially interactive robot,» Cognitive Systems Research, vol. 54, pp. 287-301, 2019.
dc.relationM. Salzmann-Erikson y H. Eriksson, «Absorbability, applicability and availability in nursing and care robots: A thematic analysis of Twitter postings,» Telematics and Informatics, vol. 35, nº 5, pp. 1553-1560, 2018.
dc.relationS. M. S. Khaksar, R. Khosla, M. T. Chu y F. S. Shahmehr, «Service Innovation Using Social Robot to Reduce Social Vulnerability among Older People in Residential Care Facilities,» Technological Forecasting and Social Change, vol. 113, pp. 438-453, 2016.
dc.relationR. Looije, M. A. Neerincx y K. V. Hindriks, «Specifying and testing the design rationale of social robots for behavior change in children,» Cognitive Systems Research, vol. 43, pp. 250-265, 2017.
dc.relationC. Shi, S. Satake, T. Kanda y H. Ishiguro, «How would store managers employ social robots?,» de 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 2016
dc.relationR. Schraft, «Mechatronics and robotics for service applications,» IEEE Robotics & Automation Magazine, vol. 1, nº 4, pp. 31-35, 1994.
dc.relationA. Babić, N. Jagodin y Z. Kovačić, «Autonomous task execution within NAO robot scouting mission framework,» de European Conference on Mobile Robots (ECMR), Paris, 2017.
dc.relationA. S. H. H. V. Injarapu y S. K. Gawre, «A survey of autonomous mobile robot path planning approaches,» de International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), Bhopal, India, 2017.
dc.relationL. Zhao, S. Huang y G. Dissanayake, «Linear SLAM: Linearising the SLAM problems using submap joining,» Automatica, vol. 100, pp. 231-246, 2019.
dc.relationL. Li, M. Yang, C. Wang y B. Wang, «Cubature Kalman Filter based point set registration for SLAM,» de IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016.
dc.relationR. Garro, J. Orozco, L. Ordinez y R. Santos, «Estrategias de diseño basadas en patrones de un subsistema de movimiento para un robot pulverizador,» de 2014 IEEE Biennial Congress of Argentina (ARGENCON), Bariloche, Argentina, 2014.
dc.relationI. Maurović, M. Seder, K. Lenac y I. Petrović, «Path Planning for Active SLAM Based on the D* Algorithm With Negative Edge Weights,» IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, nº 8, pp. 1321-1331, 2018.
dc.relationD. Drake, S. Koziol y E. Chabot, «Mobile Robot Path Planning With a Moving Goal,» IEEE Access, vol. 6, pp. 12800-12814, 2019.
dc.relationQ. You y K. J., «Transit tomography using probabilistic time geography: planning routes without a road map,» Journal of Location Based Services, vol. 8, nº 14, pp. 211-228, 2014.
dc.relationA. Niewola y L. Podsedkowski, «L* Algorithm-a linear computational complexity graph searching algorithm for path planning,» Journal of Intelligent & Robotic Systems, vol. 91, nº 3-4, p. 425–444, 2018.
dc.relationW. Wang, H. Deng y X. Wu, «Path planning of loaded pin-jointed bar mechanisms using Rapidly-exploring Random Tree method,» Computers & Structures, vol. 209, pp. 65-73, 2018.
dc.relationY. Li, H. Chen, M. J. Er y X. Wang, «Coverage path planning for UAVs based on enhanced exact cellular decomposition method,» Mechatronics, vol. 21, nº 5, pp. 876-885, 2011.
dc.relationM. Candeloro, A. M. Lekkas y A. J. Sørensen, «A Voronoi-diagram-based dynamic path-planning system for underactuated marine vessels,» Control Engineering Practice, vol. 61, pp. 41-54, 2017.
dc.relationP. Sudhakara, V. Ganapathy, B. Priyadharshini y K. Sundaran, «Obstacle Avoidance and Navigation Planning of a Wheeled Mobile Robot using Amended Artificial Potential Field Method,» Procedia Computer Science, vol. 133, 2018.
dc.relationA. Marzoughi, «Navigating a mobile robot to avoid moving obstacles using virtual source/sink force field,» de IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 2017.
dc.relationJ. Berger y N. Lo, «An innovative multi-agent search-and-rescue path planning approach,» Computers & Operations Research, vol. 53, pp. 24-32, 2015.
dc.relationA. Lazarowska, «A Trajectory Base Method for Ship's Safe Path Planning,» Procedia Computer Science, vol. 96, pp. 1022-1031, 2016.
dc.relationZ. Zhang, J. Wang y J. Li, «Lossless convexification of nonconvex MINLP on the UAV path-planning problem,» Optimal Control Applications and Methods, vol. 39, nº 2, pp. 845-859, 2017.
dc.relationG. Vitello, A. Alongi, V. Conti y S. Vitabile, «A Bio-Inspired Cognitive Agent for Autonomous Urban Vehicles Routing Optimization,» IEEE Transactions on Cognitive and Developmental Systems, vol. 9, nº 1, pp. 5-15, 2017.
dc.relationS. Konatowski y P. Pawłowski, «Ant colony optimization algorithm for UAV path planning,» de 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2018.
dc.relationP. Das, H. Behera y B. Panigrahi, «A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning,» Swarm and Evolutionary Computation, vol. 28, pp. 14-28, 2016.
dc.relationB. Patle, D. Parhi, A. Jagadeesh y S. K. Kashyap, «Matrix-Binary Codes based Genetic Algorithm for path planning of mobile robot,» Computers & Electrical Engineering, vol. 67, pp. 708-728, 2018.
dc.relationB. S. Sandeep y P. Supriya, «Analysis of fuzzy rules for robot path planning,» de International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 2016.
dc.relationH. Duan y L. Huang, «Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning,» Neurocomputing, vol. 125, pp. 166- 171, 2014
dc.relationJ. G. Guarnizo y L. F. Niño, «Clonal Selection Algorithm Applied to Object Recognition in Mobile Robots,» de 15th International Conference on Machine Learning and Data Mining , New York, USA, 2019
dc.relationV. S. Bhadoria, N. S. Pal y V. Shrivastava, «Artificial immune system based approach for size and location optimization of distributed generation in distribution system,» International Journal of System Assurance Engineering and Management, vol. 10, nº 3, p. 339–349, 2019.
dc.relationW. Zhang, G. G. Yen y Z. He, «Constrained Optimization Via Artificial Immune System,» IEEE Transactions on Cybernetics, vol. 44, nº 2, pp. 185-198, 2014.
dc.relationT. He, Y. Zhang, F. Sun y X. Shi, «Immune optimization based multi-objective six-DOF trajectory planning for industrial robot manipulators,» de 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 2016.
dc.relationW. Qu, S. Jia y X. Zhao, «Environment exploration and recognition for mobile robot using immune algorithm and objectness measure,» de IEEE International Conference on Mechatronics and Automation (ICMA), Beijin, China, 2015.
dc.relationZ. Xuefeng, W. Jianhui y W. Xiaofeng, «Upper limb rehabilitation trajectory optimization based on artificial immune genetic algorithm,» de The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 2015
dc.relationY. Luo, Z. Wu, S. Bi, Y. Zhang, Q. Zheng y Q. Huang, «A biped humanoid robot's gait planning method based on Artificial Immune Network,» de International Conference on Machine Learning and Cybernetics, Lanzhou, China, 2014
dc.relationD. Chen, S. Li, J. Wang, Y. Feng y Y. Liu, «A multi-objective trajectory planning method based on the improved immune clonal selection algorithm,» Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 431-442, 2019.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleOptimización de trayectorias mediante algoritmos bio-inspirados aplicado a robots móviles con percepción local
dc.typeFormación de Recurso Humano para la Ctel: Proyecto ejecutado con investigadores en empresas, industrias y Estado


Este ítem pertenece a la siguiente institución