dc.contributor | Martínez Bonilla, Carlos Andrés | |
dc.contributor | Universidad Santo Tomás | |
dc.creator | Peña Gonzalez, Paula Tatiana | |
dc.date.accessioned | 2021-03-16T18:33:12Z | |
dc.date.available | 2021-03-16T18:33:12Z | |
dc.date.created | 2021-03-16T18:33:12Z | |
dc.date.issued | 2021-03-15 | |
dc.identifier | Peña, P. T. (2021) Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana / Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas. [Tesis de pregrado] Universidad Santo Tomás, Bucaramanga, Colombia. | |
dc.identifier | http://hdl.handle.net/11634/32504 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.description.abstract | In the last decade, contamination by heavy metals in aqueous media has become a global problem that has increased with the confluence of natural sources and, mainly, anthropogenic activities (industrial activities, mining activities, use of pesticides, among others). This condition has generated an increase in the concentration of heavy metals in water effluents, generating therefore a risk for the health of any living system. Metal ions have the capacity to bioaccumulate and biomagnifies in the organism, causing the alteration of numerous biochemical and physiological processes in animals and plants, triggering various pathologies. Currently, the identification and removal of heavy metals from water sources is a costly and slow process and, in most cases, it is not carried out adequately due to the complicated instrumental techniques used and their detection limits. In Colombia, for example, the monitoring of these metals in water for human consumption is not required according to Chapter V and VI of Resolution 2115 of 2007, therefore, there is no control of this type of contaminants in the country's water sources.
Currently, the identification and quantification of heavy metals is carried out using medium/high complexity and high-cost equipment and procedures (techniques such as atomic absorption and mass spectrometry). This situation is unfavorable in view of the regional, national, and global need for rapid identification and quantification of this type of ions. So that the contamination of the effluent can be evidenced in an efficient manner. Nowadays, several methods have emerged that can carry out the identification and quantification of these ions in a fast and selective way. Within this set of methods, the use of various nanomaterials stands out, which, due to their luminescent properties, have become chemosensors of interest in this field. Within this type of nanomaterials, quantum dots (QDs) respond to the presence of certain heavy metals by modifying their luminescence depending on the concentration of the metal. Additionally, the use of these nanomaterials in conjunction with a nanocellulose (NC) support enhances their properties, making them a promising material for the in-situ identification of heavy metals in water effluents.
Considering the current interest in rapid detection techniques for heavy metals, in the present work, the production of CdTe and CdTe/ZnS QDs was carried out by colloidal aqueous synthesis, which fulfill their function as sensitizing agents allowing the generation of the chemosensor based on their coupling with bacterial nanocellulose (NCB), evaluating different charge ratios in the nanocomposite. For the nano paper or chemosensor, it was evidenced that the optimal NCB loading per unit area was 2.21 mg NCB/cm2, this ratio allowed obtaining a homogeneous and appropriate nano paper for the adsorption of QDs. Additionally, the chemosensor and its constituent elements were structurally and morphologically characterized by UV-vis, IR, XRD, fluorescence, SEM and TEM techniques that allowed identifying the particle size of the QDs (~ 2.4 nm), having a core with a face-centered cubic crystalline structure (CCC) and organic ligands evidenced by IR showing their characteristic signals. Finally, the chemosensor was shown to be sensitive to heavy metals such as chromium, silver, copper, mercury, and lead, finding that mercury is the most influential metal in the variation of the fluorescence of the QDs generating an almost total quenching of the fluorescence of the chemosensor at concentrations above 1 µM. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Pregrado Química Ambiental | |
dc.publisher | Facultad de Química Ambiental | |
dc.relation | Abol-Fotouch, D., Hassan, M., Shokry, H., Roig, A., Azab, M., & Hady, A. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Acientific Reports, 10(1), 3491. https://doi.org/10.1038/s41598-020-60315-9 | |
dc.relation | Anderson, N., Hendricks, M., Choi, J., & Owen, J. (2013). Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding. American Chemical Society, 135, 18536–18548. https://doi.org/10.1021/ja4086758 | |
dc.relation | Ansari, Z., Singha, S. S., Saha, A., & Sen, K. (2017). Hassle free synthesis of nanodimensional Ni, Cu and Zn sulfides for spectral sensing of Hg, Cd and Pb: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 67–78. https://doi.org/10.1016/j.saa.2017.01.005 | |
dc.relation | Anton-Sales, I., Beejmann, U., Laromaine, A., Roig, A., & Kralisch, D. (2019). Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 20(8), 808–822. https://doi.org/10.2174/1389450120666181129092144 | |
dc.relation | Arulraj, A. D., Devasenathipathy, R., Chen, S.-M., Vasantha, V. S., & Wang, S.-F. (2015). Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium. Sensing and Bio-Sensing Research, 6, 19–24. https://doi.org/10.1016/j.sbsr.2015.10.004 | |
dc.relation | Ávila, J. A. (2019). Obtención Y Esterificación Sostenible De Nanocelulosa Bacteriana Para Usos Que Requieren Regular La Polaridad De Las Nanofibras. Instituto de tecnología en polímeros y nanotecnología. | |
dc.relation | Boonmee, C., Noipa, T., Tuntulani, T., & Ngeontae, W. (2016). Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 161–168. https://doi.org/10.1016/j.saa.2016.05.007 | |
dc.relation | Borgohain, R., Boruah, P. K., & Baruah, S. (2016). Heavy-metal ion sensor using chitosan capped ZnS quantum dots. Sensors and Actuators B: Chemical, 226, 534–539. https://doi.org/10.1016/j.snb.2015.11.118 | |
dc.relation | Cardona, S. (2020). Degradación fotocatalítica del 2,4 dinitrofenol con puntos cuánticos de CdSe/ZnS. Universidad Nacional de Colombia. | |
dc.relation | Chakraborty, S., & Hussain, S. A. (2020). Fluorescence resonance energy transfer (FRET) between acriflavine and CdTe quantum dot. Materials Today: Proceedings, 3–4. https://doi.org/10.1016/j.matpr.2020.02.757 | |
dc.relation | Chandan, R., Schiffman, J. D., & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 258, 1191–1214. https://doi.org/10.1016/j.snb.2017.11.189 | |
dc.relation | Chatzigoulas, A., Karathanou, K., Dellis, D., & Cournia, Z. (2018). NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. Journal od Chemical Information and Modeling, 58(12), 2380–2386. https://doi.org/10.1021/acs.jcim.8b00269 | |
dc.relation | Chen, J.-L., & Zhu, C.-Q. (2005). Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta, 546(2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006 | |
dc.relation | Chen, J., Zheng, A., Gao, Y., He, C., Wu, G., Chen, Y., Kai, X., & Zhu, C. (2008). Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3), 1044–1052. https://doi.org/10.1016/j.saa.2007.06.021 | |
dc.relation | Chiodo, S., Russi, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. https://doi.org/10.1063/1.2345197 | |
dc.relation | Cortez, Y. (2018). Análisis de la eficiencia de nanotubos de TiO2 con puntos cuánticos CuInS2 en su estructura como fotocatalizadores para la degradación de fenol en solución acuosa. Escuela Politécnica Nacional. | |
dc.relation | Costas, I., Romero, V., Lavilla, I., & Bendicho, C. (2014). An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends in Analytical Chemistry, 57, 64–72. https://doi.org/10.1016/j.trac.2014.02.004 | |
dc.relation | Daud, J., & Lee, K.-Y. (2017). Surface Modification of Nanocellulose. En H. Kargarzadeh, I. Ahmad, S. Thomas, & A. Dufresne (Eds.), Handbook of Nanocellulose and Cellulose (pp. 101–122). Wiley-VCH. https://doi.org/10.1002/9783527689972.ch3 | |
dc.relation | Devi, P., Rajput, P., Thakur, A., Kim, K.-H., & Kumar, P. (2019). Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends in Analytical Chemistry, 114, 171–195. https://doi.org/10.1016/j.trac.2019.03.003 | |
dc.relation | Dolez, P. I. (2015). Chapter 1.1 - Nanomaterials Definitions, Classifications, and Applications (P. I. Dolez (Ed.); pp. 3–40). Elsevier. https://doi.org/10.1016/B978-0-444-62747-6.00001-4 | |
dc.relation | Dral, P. O., Wu, X., & Thiel, W. (2019). Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation, 15(3), 1743–1760. https://doi.org/10.1021/acs.jctc.8b01265 | |
dc.relation | Elmizadeh, H., Soleimani, M., Faridbod, F., & Bardajee, G. (2019). Fabrication of a nanomaterial-based fluorescence sensor constructed from ligand capped CdTe quantum dots for ultrasensitive and rapid detection of silver ions in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 291–298. https://doi.org/10.1016/j.saa.2018.12.016 | |
dc.relation | Eom, H., Hwang, J., Hassan, S. H. A., Joo, J. H., Hur, J. H., Chon, K., Jeon, B.-H., Song, Y.-C., Chae, K.-J., & Oh, S.-E. (2019). Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. Journal of Microbiological Methods, 161, 35–42. https://doi.org/10.1016/j.mimet.2019.04.007 | |
dc.relation | Filali, S., Pirot, F., & Miossec, P. (2019). Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends in Biotechnology, 163–177. https://doi.org/10.1016/j.tibtech.2019.07.013 | |
dc.relation | Friesner, R. A., & Jerome, S. V. (2017). Localized orbital corrections for density functional calculations on transition metal containing systems. Coordination Chemistry Reviews, 344, 205–213. https://doi.org/10.1016/j.ccr.2017.02.014 | |
dc.relation | Gheshlaghi, N., Pisheh, H. S., Karim, M. R., Malkoc, D., & Ünlü, H. (2016). Interfacial strain effect on type-I and type-II core/shell quantum dots. Superlattices and Microstructures, 97, 489–494. https://doi.org/10.1016/j.spmi.2016.07.020 | |
dc.relation | Ghosh, R., & Paria, S. (2011). Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112(4), 2373–2433. https://doi.org/10.1021/cr100449n | |
dc.relation | Goyeneche, L. M. (2018). Determinación del tamaño de partícula mediante diracción de rayos X. Universidad de Cantabria. | |
dc.relation | Gui, R., An, X., Su, H., Shen, W., Chen, Z., & Wang, X. (2012). A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF–ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta, 94, 257–262. https://doi.org/10.1016/j.talanta.2012.03.036 | |
dc.relation | Guyot, P. (2008). Colloidal quantum dots. Comptes Rendus Physique, 9(8), 777–787. https://doi.org/10.1016/j.crhy.2008.10.006 | |
dc.relation | Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345–352. https://doi.org/10.1042/bj0580345 | |
dc.relation | Hosseini, M., Ganjali, M. R., Vaezi, Z., Faridbod, F., Arabsorkhi, B., & Sheikhha, M. H. (2014). Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 116–120. https://doi.org/10.1016/j.saa.2013.10.074 | |
dc.relation | Huang, X., Tong, X., & Wang, Z. (2020). Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology, 100018. https://doi.org/10.1016/j.jnlest.2020.100018 | |
dc.relation | IDEAM. (2019). Estudio Nacional del Agua 2018 (pp. 229–232). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdf | |
dc.relation | IDEAM, & INVEMAR. (2018). Protocolo de Monitoreo del Agua (pp. 76–77). | |
dc.relation | Imran, M., Jawwad, M., Kuznetsov, A., Idrees, N., Iqbal, J., & Ali, A. (2019). Computational investigations into the structural and electronic properties of CdnTen (n=1–17) quantum dots. The Royal Society of Chemistry, 9, 5091–5099. https://doi.org/10.1039/c8ra09465a | |
dc.relation | Jaiswal, J. K., & Simon, S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology, 14(9), 497–504. https://doi.org/10.1016/j.tcb.2004.07.012 | |
dc.relation | Jang, Y., Shapiro, A., Isarov, M., Rubin-Brusilovski, A., Safran, A., Budniak, A., Horani, F., Dehnel, J., Sashchiuk, A., & Lifshitz, E. (2017). Interface control of electronic and optical properties in IV-VI and II-VI core/shell coloidal quantum dots: A review. Chemical Communications, 53(6), 1002–1024. https://doi.org/10.1039/C6CC08742F | |
dc.relation | Jiao, Z., Zhang, P., Chen, H., Li, C., Chen, L., Fan, H., & Cheng, F. (2019). Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sensors and Actuators B: Chemical, 295, 110–116. https://doi.org/10.1016/j.snb.2019.05.059 | |
dc.relation | Jiménez-López, J., Rodrigues, S. S. M., Ribeiro, D. S. M., Ortega-Barrales, P., Ruiz-Medina, A., & Santos, J. L. M. (2019). Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 212, 246–254. https://doi.org/10.1016/j.saa.2019.01.005 | |
dc.relation | Joseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198 | |
dc.relation | Kamide, K. (2005). 1- Introduction. En K. Kamide (Ed.), Cellulose and Cellulose Derivatives (pp. 1–23). Elsevier Science. https://doi.org/10.1016/B978-044482254-3/50003-5 | |
dc.relation | Kilina, S., Ivaniv, S., & Tretiak, S. (2009). Effect of Surface Ligands on Optical and Electronic Spectra of Semiconductor Nanoclusters. Journal of the American Chemical Society, 131(22), 7717–7726. https://doi.org/10.1021/ja9005749 | |
dc.relation | Kilina, S., Tamukong, P., & Kilin, D. (2016). Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. American Chemical Society, 49, 2127–2135. https://doi.org/10.1021/acs.accounts.6b00196 | |
dc.relation | Kim, J., Oh, J. S., Park, K. C., Gupta, G., & Lee, C. Y. (2019). Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorganica Chimica Acta, 486, 69–73. https://doi.org/10.1016/j.ica.2018.10.025 | |
dc.relation | Kuang, Y., Wang, X., Tian, X., Yang, C., Li, Y., & Nie, Y. (2019). Silica-embedded CdTe quantum dots functionalized with rhodamine derivative for instant visual detection of ferric ions in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 372, 140–146. https://doi.org/10.1016/j.jphotochem.2018.12.015 | |
dc.relation | Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364 | |
dc.relation | Kuznetsov, A., & Beratan, D. (2014). Structural and Electronic Properties of Bare and Capped Cd33Se33 and Cd33Te33 Quantum Dots. American Chemical Society, 118, 7094–7109. https://doi.org/10.1021/jp4007747 | |
dc.relation | Labeb, M., Sakr, A.-H., Soliman, M., Abdel-Fattah, T. M., & Ebrahim, S. (2018). Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Optical Materials, 79, 331–335. https://doi.org/10.1016/j.optmat.2018.03.060 | |
dc.relation | Lefebvre, P., Richard, T., Allègre, J., Mathieu, H., Pradel, A., Marc, J., Boudes, L., Granier, W., & Ribes, M. (1994). Sol-Gel preparation and optical characterization of sodium borosilicate glasses doped with II-VI semiconductor nanocrystals. Proceedings of SPIE - The International Society for Optical Engineering, 2288, 163–173. https://doi.org/10.1117/12.188948 | |
dc.relation | Liu, J., Lv, G., Gu, W., Li, Z., Tang, A., & Mei, L. (2017). A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. Journal of Materials Chemistry C, 5(20), 5024–5030. https://doi.org/10.1039/c7tc00935f | |
dc.relation | Liu, S., Wang, Y.-M., & Han, J. (2017). Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 32, 78–103. https://doi.org/10.1016/j.jphotochemrev.2017.06.002 | |
dc.relation | Liu, Z., Mo, Z., Niu, X., Yang, X., Jiang, Y., Zhao, P., Liu, N., & Guo, R. (2020). Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 566, 357–368. https://doi.org/10.1016/j.jcis.2020.01.092 | |
dc.relation | Ma, Q., Ha, E., Yang, F., & Su, X. (2011). Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film. Analytica Chimica Acta, 701(1), 60–65. https://doi.org/10.1016/j.aca.2011.04.051 | |
dc.relation | Marandi, M., Emrani, B., & Zare, H. (2017). Synthesis of highly luminescent CdTe / CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Optical Materials, 69, 358–366. https://doi.org/10.1016/j.optmat.2017.04.058 | |
dc.relation | Minambiente. (2020). Nomartiva Recurso Hídrico. https://www.minambiente.gov.co/index.php/gestion-integral-del-recurso-hidrico/normativa-recurso-hidrico | |
dc.relation | Mishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005 | |
dc.relation | Modlitbová, P., Novotný, K., Pořízka, P., Klus, J., Lubal, P., Zlámalová-Gargošová, H., & Kaiser, J. (2018). Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicology and Environmental Safety, 147, 334–341. https://doi.org/10.1016/j.ecoenv.2017.08.053 | |
dc.relation | NANO-SME. (2007). Aplicaciones industriales de la nanotecnología (pp. 25–41). Tresalia Comunication. | |
dc.relation | Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 1 - An Introduction to Nanotechnology (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 1–7). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00001-8 | |
dc.relation | Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 4 - Applications of Nanotechnology in Daily Life (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 113–143). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3 | |
dc.relation | Nguyen, K., Pachter, R., Jiang, J., & Day, P. N. (2018). Systematic Study of Structure, Stability, and Electronic Absorption of Tetrahedral CdSe Clusters with Carboxylate and Amine Ligands. The Journal of Pgysical Chemistry A, 122(33), 6704–6712. https://doi.org/10.1021/acs.jpca.8b02813 | |
dc.relation | Oluwafemi, S., Revaprasadu, N., & Ramirez, A. (2008). A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Journal of Crystal Growth, 310(13), 3230–3234. https://doi.org/10.1016/j.jcrysgro.2008.03.032 | |
dc.relation | ONU. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019 (pp. 14–17). UNESCO. | |
dc.relation | Paramanik, B., Bhattacharyya, S., & ´Patra, A. (2013). Detection of Hg2+ and F- ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QD nanocomposite. Chemistry-A European Journal, 19(19), 5980–5987. https://doi.org/10.1002/chem.201203576 | |
dc.relation | Patel, J., Jain, B., Singh, A. K., Susan, M. A. B. H., & Jean-Paul, L. (2020). Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchemical Journal, 155, 104755. https://doi.org/10.1016/j.microc.2020.104755 | |
dc.relation | Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004 | |
dc.relation | Ploem, J. (1999). CHAPTER ONE - Fluorescence Microscopy (W. T. Mason (Ed.); pp. 3–13). Academic Press. https://doi.org/10.1016/B978-012447836-7/50003-8 | |
dc.relation | Pooja, D., Saini, S., Thakur, A., Kumar, B., Tyagi, S., & Nayak, M. K. (2017). A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. Journal of Hazardous Materials, 328, 117–126. https://doi.org/10.1016/j.jhazmat.2017.01.015 | |
dc.relation | Pradeep, T., & Anshup. (2009). Noble metal nanoparticles for water putification: A critical review. Thin Solid Films, 517(24), 6441–6478. https://doi.org/10.1016/j.tsf.2009.03.195 | |
dc.relation | Ray, S., & Salehiyan, R. (2020). Chapter 2 - Fundamental definition and importance of nanomaterials, nanostructured, and bulk nanostructured materials (S. S. Ray & R. Salehiyan (Eds.); pp. 15–28). Elsevier. https://doi.org/10.1016/B978-0-12-816707-6.00002-X | |
dc.relation | Reshma, V. G., & Mohanan, P. V. (2019). Quantum dots: Applications and safety consequences. Journal of Luminescence, 205, 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015 | |
dc.relation | Resolución 2115 de 2007 (pp. 3–4). (2007). https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdf | |
dc.relation | Resolución 631 de 2015 (Vol. 2015, pp. 13–15). (2015). https://rds.org.co/es/recursos/resolucion-631-de-2015-parametros-vertimientos | |
dc.relation | Rodrigues, S. S. M., Ribeiro, D. S. M., Soares, J. X., Passos, M. L. C., Saraiva, M. L. M. F. S., & Santos, J. L. M. (2017). Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coordination Chemistry Reviews, 330, 127–143. https://doi.org/10.1016/j.ccr.2016.10.001 | |
dc.relation | Rodríguez, C. (2019). Evolución de la calidad del río vetas relacionada con la minería aurifera practicada en la provincia de soto en Santander. Universidad de Manizales. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/3413/documento maestria FINAL 18 MAYO %282%29.pdf?sequence=1&isAllowed=y | |
dc.relation | Ruiz, C., Soriano, L., & Valcárcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1–18. https://doi.org/j.trac.2016.11.007 | |
dc.relation | Safari, M., Najafi, S., Arkan, E., Amani, S., & Shahlaei, M. (2019). Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchemical Journal, 146, 293–299. https://doi.org/10.1016/j.microc.2019.01.019 | |
dc.relation | Sánchez, A. (2016). Síntesis y caracterización de puntos cuánticos de PbSe con aplicaciones en celdas fotovoltaícas con configuración FTO/TiO2/CdS/PbSe/ZnS. Centro de Investigaciones en Óptica, A.C | |
dc.relation | SCOPUS. (2020a). Documents by country or territory (Vol. 2020, Número 3 de febrero de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sort | |
dc.relation | SCOPUS. (2020b). Documents by country or territory (Vol. 2020, Número 13 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&so | |
dc.relation | SCOPUS. (2020c). Documents by year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sort | |
dc.relation | SCOPUS. (2020d). Documents by Year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&so | |
dc.relation | Shang, Z. Bin, Wang, Y., & Jin, W. J. (2009). Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta, 78(2), 364–369. https://doi.org/10.1016/j.talanta.2008.11.025 | |
dc.relation | Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., & Goswami, S. (2019). Commercial application of cellulose nano-composites – A review. Biotechnology Reports, 21, e00316. https://doi.org/10.1016/j.btre.2019.e00316 | |
dc.relation | Smith, A., Duan, H., Rhyner, M., Ruan, G., & Nie, S. (2006). A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 8(33), 3895–3903. https://doi.org/10.1039/B606572B | |
dc.relation | Song, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, T. T., & Guo, M. (2020). Luminescent carbon quantum dots/nanofibrillated cellulose composite aerogel for monitoring adsorption of heavy metal ions in water. Optical Materials, 100, 109642. https://doi.org/10.1016/j.optmat.2019.109642 | |
dc.relation | Speakman, S. (2008). Estimating Crystallite Size Using XRD (pp. 10–12). MIT Center for Materials Science and Engineering. | |
dc.relation | Tan, K., Heo, S., Foo, M., Chew, I. M., & Yoo, C. (2019). An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Science of The Total Environment, 650(1), 1309–1326. https://doi.org/10.1016/j.scitotenv.2018.08.402 | |
dc.relation | Tang, A., Liu, Y., Wang, Q., Chen, R., Liu, W., Fang, Z., & Wang, L. (2016). A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydrate Polymers, 148, 29–35. https://doi.org/10.1016/j.carbpol.2016.04.034 | |
dc.relation | Tarantini, A., Wegner, K. D., Dussert, F., Sarret, G., Beal, D., Mattera, L., Lincheneau, C., Proux, O., Truffier-Boutry, D., Moriscot, C., Gallet, B., Jouneau, P.-H., Reiss, P., & Carrière, M. (2019). Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 14, 100168. https://doi.org/10.1016/j.impact.2019.100168 | |
dc.relation | Tomczak, N., Jańczewski, D., Han, M., & Vancso, G. J. (2009). Designer polymer-quantum dot architectures. Progress in Polymer Science, 34(5), 393–430. https://doi.org/10.1016/j.progpolymsci.2008.11.004 | |
dc.relation | Tsay, J., Pflughoefft, M., Bentolila, L., & Weiss, S. (2004). Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals. Journal of the American Chemical Society, 126(7), 1926–1927. https://doi.org/10.1021/ja039227v | |
dc.relation | Ullah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155–166. https://doi.org/10.1016/j.trac.2018.01.002 | |
dc.relation | Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126 | |
dc.relation | Vasudevan, D., Trinchi, A., Hardin, S. G., & Cole, I. S. (2015). Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots. Journal of Luminescence, 166, 88–92. https://doi.org/10.1016/j.jlumin.2015.04.043 | |
dc.relation | Vázquez, M. (2016). Sondas fluorescentes acuosolubles para metales tóxicos. Universidad de Santiago de Compostela. | |
dc.relation | Wagner, A. M., Knipe, J. M., Orive, G., & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63. https://doi.org/10.1016/j.actbio.2019.05.022 | |
dc.relation | Wang, L., Ma, W., Xu, L., Chen, W., Zhu, Y., Xu, C., & Kotov, N. A. (2010). Nanoparticle-based environmental sensors. Materials Science and Engineering: R: Reports, 70(3), 265–274. https://doi.org/10.1016/j.mser.2010.06.012 | |
dc.relation | Wei, Q., Nagi, R., Sadeghi, K., Feng, S., Yan, E., Ki, S. J., Caire, R., Tseng, D., & Ozcan, A. (2014). Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano, 8(2), 1121–1129. https://doi.org/10.1021/nn406571t | |
dc.relation | Whitehead, P. G., Bussi, G., Peters, R., Hossain, M. A., Softley, L., Shawal, S., Jin, L., Rampley, C. P. N., Holdship, P., Hope, R., & Alabaster, G. (2019). Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Science of The Total Environment, 697, 134090. https://doi.org/10.1016/j.scitotenv.2019.134090 | |
dc.relation | Wu, Y., Sun, J., Zhang, Y., Pu, M., Zhang, G., He, N., & Zeng, X. (2017). Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor. ACS Applied Materials & Interfaces, 9(15), 13068–13078. https://doi.org/10.1021/acsami.7b02641 | |
dc.relation | Xiao, J.-W., Ma, S., Yu, S., Zhou, C., Liu, P., Chen, Y., Zhou, H., Li, Y., & Chen, Q. (2018). Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 46, 45–53. https://doi.org/10.1016/j.nanoen.2018.01.035 | |
dc.relation | Xu, Q., Cai, W., Li, W., Sreeprasad, T. S., He, Z., Ong, W.-J., & Li, N. (2018). Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 10, 222–240. https://doi.org/10.1016/j.mtener.2018.09.005 | |
dc.relation | Xue, S., Wang, P., & Chen, K. (2020). A novel fluorescent chemosensor for detection of mercury(II) ions based on dansyl-peptide and its application in real water samples and living LNcap cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117616. https://doi.org/10.1016/j.saa.2019.117616 | |
dc.relation | Yang, Y., Jiang, J., Shen, G., & Yu, R. (2009). An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Analytica Chimica Acta, 636(1), 83–88. https://doi.org/10.1016/j.aca.2009.01.038 | |
dc.relation | Yu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860. https://doi.org/10.1021/cm034081k | |
dc.relation | Zeiri, N., Naifar, A., Nasrallah, S. A.-B., & Said, M. (2019). Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 36, 100725. https://doi.org/10.1016/j.photonics.2019.100725 | |
dc.relation | Zhang, L., & Fang, M. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5(2), 128–142. https://doi.org/10.1016/j.nantod.2010.03.002 | |
dc.relation | Zhang, M., Zhu, G., Li, T., Lou, X., & Zhu, L. (2019). A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Optics Communications. https://doi.org/10.1016/j.optcom.2019.124750 | |
dc.relation | Zhang, Q., Zhang, L., Wu, W., & Xiao, H. (2019). Methods and Applications of Nanocellulose Loaded with Inorganic Nanomaterials: A review. Carbohydrate Polymers, 115454. https://doi.org/10.1016/j.carbpol.2019.115454 | |
dc.relation | Zhang, Ya-nan, Sun, Y., Cai, L., Gao, Y., & Cai, Y. (2020). Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement, 107742. https://doi.org/10.1016/j.measurement.2020.107742 | |
dc.relation | Zhang, Yonghong, Guo, Q., Huang, S., & Suo, F. (2016). The Adsorption of Ag on (CdTe)13 Core-Cage Nanocluster: A Computational Study. Journal of Cluster Science, 27(3), 1057–1066. https://doi.org/10.1007/s10876-016-0992-0 | |
dc.relation | Zhao, Y., Xu, M., Liu, Q., Wang, Z., Zhao, L., & Chen, Y. (2018). Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Marine Pollution Bulletin, 137, 601–609. https://doi.org/10.1016/j.marpolbul.2018.10.044 | |
dc.relation | Zheng, D., Zhao, P., & Zhu, L. (2019). Non-conjugated and π-conjugated functional ligands on semiconductive quantum dots. Composites Communications, 11, 21–26. https://doi.org/10.1016/j.coco.2018.10.008 | |
dc.relation | Zheng, J., Gao, S., & Ying, J. (2007). Synthesis and Cell‐Imaging Applications of Glutathione‐Capped CdTe Quantum Dots. Advanced Materials, 19(3), 376–380. https://doi.org/10.1002/adma.200600342 | |
dc.relation | Zhou, Z.-Q., Liao, Y.-P., Yang, J., Huang, S., Xiao, Q., Yang, L.-Y., & Liu, Y. (2020). Rapid ratiometric detection of Cd2+ based on the formation of ZnSe/CdS quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117795. https://doi.org/10.1016/j.saa.2019.117795 | |
dc.relation | Zhu, C., Chen, Z., Gao, S., Goh, B. L., Samsudin, I. Bin, Lwe, K. W., Wu, Y., Wu, C., & Su, X. (2019). Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 29(6), 628–640. https://doi.org/10.1016/j.pnsc.2019.11.007 | |
dc.relation | Zou, L., Gu, Z., & Sun, M. (2015). Review of the application of quantum dots in the heavy-metal detection. Toxicological & Environmental CHemistry, 97(3–4), 477–490. https://doi.org/10.1080/02772248.2015.1050201 | |
dc.rights | Acceso cerrado | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | http://purl.org/coar/access_right/c_14cb | |
dc.title | Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas | |