dc.contributorMartínez Bonilla, Carlos Andrés
dc.contributorUniversidad Santo Tomás
dc.creatorPeña Gonzalez, Paula Tatiana
dc.date.accessioned2021-03-16T18:33:12Z
dc.date.available2021-03-16T18:33:12Z
dc.date.created2021-03-16T18:33:12Z
dc.date.issued2021-03-15
dc.identifierPeña, P. T. (2021) Generación de Quimiosensores del Nanocomposito Celulosa Bacteriana / Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas. [Tesis de pregrado] Universidad Santo Tomás, Bucaramanga, Colombia.
dc.identifierhttp://hdl.handle.net/11634/32504
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractIn the last decade, contamination by heavy metals in aqueous media has become a global problem that has increased with the confluence of natural sources and, mainly, anthropogenic activities (industrial activities, mining activities, use of pesticides, among others). This condition has generated an increase in the concentration of heavy metals in water effluents, generating therefore a risk for the health of any living system. Metal ions have the capacity to bioaccumulate and biomagnifies in the organism, causing the alteration of numerous biochemical and physiological processes in animals and plants, triggering various pathologies. Currently, the identification and removal of heavy metals from water sources is a costly and slow process and, in most cases, it is not carried out adequately due to the complicated instrumental techniques used and their detection limits. In Colombia, for example, the monitoring of these metals in water for human consumption is not required according to Chapter V and VI of Resolution 2115 of 2007, therefore, there is no control of this type of contaminants in the country's water sources. Currently, the identification and quantification of heavy metals is carried out using medium/high complexity and high-cost equipment and procedures (techniques such as atomic absorption and mass spectrometry). This situation is unfavorable in view of the regional, national, and global need for rapid identification and quantification of this type of ions. So that the contamination of the effluent can be evidenced in an efficient manner. Nowadays, several methods have emerged that can carry out the identification and quantification of these ions in a fast and selective way. Within this set of methods, the use of various nanomaterials stands out, which, due to their luminescent properties, have become chemosensors of interest in this field. Within this type of nanomaterials, quantum dots (QDs) respond to the presence of certain heavy metals by modifying their luminescence depending on the concentration of the metal. Additionally, the use of these nanomaterials in conjunction with a nanocellulose (NC) support enhances their properties, making them a promising material for the in-situ identification of heavy metals in water effluents. Considering the current interest in rapid detection techniques for heavy metals, in the present work, the production of CdTe and CdTe/ZnS QDs was carried out by colloidal aqueous synthesis, which fulfill their function as sensitizing agents allowing the generation of the chemosensor based on their coupling with bacterial nanocellulose (NCB), evaluating different charge ratios in the nanocomposite. For the nano paper or chemosensor, it was evidenced that the optimal NCB loading per unit area was 2.21 mg NCB/cm2, this ratio allowed obtaining a homogeneous and appropriate nano paper for the adsorption of QDs. Additionally, the chemosensor and its constituent elements were structurally and morphologically characterized by UV-vis, IR, XRD, fluorescence, SEM and TEM techniques that allowed identifying the particle size of the QDs (~ 2.4 nm), having a core with a face-centered cubic crystalline structure (CCC) and organic ligands evidenced by IR showing their characteristic signals. Finally, the chemosensor was shown to be sensitive to heavy metals such as chromium, silver, copper, mercury, and lead, finding that mercury is the most influential metal in the variation of the fluorescence of the QDs generating an almost total quenching of the fluorescence of the chemosensor at concentrations above 1 µM.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Química Ambiental
dc.publisherFacultad de Química Ambiental
dc.relationAbol-Fotouch, D., Hassan, M., Shokry, H., Roig, A., Azab, M., & Hady, A. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Acientific Reports, 10(1), 3491. https://doi.org/10.1038/s41598-020-60315-9
dc.relationAnderson, N., Hendricks, M., Choi, J., & Owen, J. (2013). Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding. American Chemical Society, 135, 18536–18548. https://doi.org/10.1021/ja4086758
dc.relationAnsari, Z., Singha, S. S., Saha, A., & Sen, K. (2017). Hassle free synthesis of nanodimensional Ni, Cu and Zn sulfides for spectral sensing of Hg, Cd and Pb: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 67–78. https://doi.org/10.1016/j.saa.2017.01.005
dc.relationAnton-Sales, I., Beejmann, U., Laromaine, A., Roig, A., & Kralisch, D. (2019). Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 20(8), 808–822. https://doi.org/10.2174/1389450120666181129092144
dc.relationArulraj, A. D., Devasenathipathy, R., Chen, S.-M., Vasantha, V. S., & Wang, S.-F. (2015). Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium. Sensing and Bio-Sensing Research, 6, 19–24. https://doi.org/10.1016/j.sbsr.2015.10.004
dc.relationÁvila, J. A. (2019). Obtención Y Esterificación Sostenible De Nanocelulosa Bacteriana Para Usos Que Requieren Regular La Polaridad De Las Nanofibras. Instituto de tecnología en polímeros y nanotecnología.
dc.relationBoonmee, C., Noipa, T., Tuntulani, T., & Ngeontae, W. (2016). Cysteamine capped CdS quantum dots as a fluorescence sensor for the determination of copper ion exploiting fluorescence enhancement and long-wave spectral shifts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 161–168. https://doi.org/10.1016/j.saa.2016.05.007
dc.relationBorgohain, R., Boruah, P. K., & Baruah, S. (2016). Heavy-metal ion sensor using chitosan capped ZnS quantum dots. Sensors and Actuators B: Chemical, 226, 534–539. https://doi.org/10.1016/j.snb.2015.11.118
dc.relationCardona, S. (2020). Degradación fotocatalítica del 2,4 dinitrofenol con puntos cuánticos de CdSe/ZnS. Universidad Nacional de Colombia.
dc.relationChakraborty, S., & Hussain, S. A. (2020). Fluorescence resonance energy transfer (FRET) between acriflavine and CdTe quantum dot. Materials Today: Proceedings, 3–4. https://doi.org/10.1016/j.matpr.2020.02.757
dc.relationChandan, R., Schiffman, J. D., & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 258, 1191–1214. https://doi.org/10.1016/j.snb.2017.11.189
dc.relationChatzigoulas, A., Karathanou, K., Dellis, D., & Cournia, Z. (2018). NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit. Journal od Chemical Information and Modeling, 58(12), 2380–2386. https://doi.org/10.1021/acs.jcim.8b00269
dc.relationChen, J.-L., & Zhu, C.-Q. (2005). Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta, 546(2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006
dc.relationChen, J., Zheng, A., Gao, Y., He, C., Wu, G., Chen, Y., Kai, X., & Zhu, C. (2008). Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3), 1044–1052. https://doi.org/10.1016/j.saa.2007.06.021
dc.relationChiodo, S., Russi, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. https://doi.org/10.1063/1.2345197
dc.relationCortez, Y. (2018). Análisis de la eficiencia de nanotubos de TiO2 con puntos cuánticos CuInS2 en su estructura como fotocatalizadores para la degradación de fenol en solución acuosa. Escuela Politécnica Nacional.
dc.relationCostas, I., Romero, V., Lavilla, I., & Bendicho, C. (2014). An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends in Analytical Chemistry, 57, 64–72. https://doi.org/10.1016/j.trac.2014.02.004
dc.relationDaud, J., & Lee, K.-Y. (2017). Surface Modification of Nanocellulose. En H. Kargarzadeh, I. Ahmad, S. Thomas, & A. Dufresne (Eds.), Handbook of Nanocellulose and Cellulose (pp. 101–122). Wiley-VCH. https://doi.org/10.1002/9783527689972.ch3
dc.relationDevi, P., Rajput, P., Thakur, A., Kim, K.-H., & Kumar, P. (2019). Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends in Analytical Chemistry, 114, 171–195. https://doi.org/10.1016/j.trac.2019.03.003
dc.relationDolez, P. I. (2015). Chapter 1.1 - Nanomaterials Definitions, Classifications, and Applications (P. I. Dolez (Ed.); pp. 3–40). Elsevier. https://doi.org/10.1016/B978-0-444-62747-6.00001-4
dc.relationDral, P. O., Wu, X., & Thiel, W. (2019). Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation, 15(3), 1743–1760. https://doi.org/10.1021/acs.jctc.8b01265
dc.relationElmizadeh, H., Soleimani, M., Faridbod, F., & Bardajee, G. (2019). Fabrication of a nanomaterial-based fluorescence sensor constructed from ligand capped CdTe quantum dots for ultrasensitive and rapid detection of silver ions in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 291–298. https://doi.org/10.1016/j.saa.2018.12.016
dc.relationEom, H., Hwang, J., Hassan, S. H. A., Joo, J. H., Hur, J. H., Chon, K., Jeon, B.-H., Song, Y.-C., Chae, K.-J., & Oh, S.-E. (2019). Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. Journal of Microbiological Methods, 161, 35–42. https://doi.org/10.1016/j.mimet.2019.04.007
dc.relationFilali, S., Pirot, F., & Miossec, P. (2019). Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends in Biotechnology, 163–177. https://doi.org/10.1016/j.tibtech.2019.07.013
dc.relationFriesner, R. A., & Jerome, S. V. (2017). Localized orbital corrections for density functional calculations on transition metal containing systems. Coordination Chemistry Reviews, 344, 205–213. https://doi.org/10.1016/j.ccr.2017.02.014
dc.relationGheshlaghi, N., Pisheh, H. S., Karim, M. R., Malkoc, D., & Ünlü, H. (2016). Interfacial strain effect on type-I and type-II core/shell quantum dots. Superlattices and Microstructures, 97, 489–494. https://doi.org/10.1016/j.spmi.2016.07.020
dc.relationGhosh, R., & Paria, S. (2011). Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112(4), 2373–2433. https://doi.org/10.1021/cr100449n
dc.relationGoyeneche, L. M. (2018). Determinación del tamaño de partícula mediante diracción de rayos X. Universidad de Cantabria.
dc.relationGui, R., An, X., Su, H., Shen, W., Chen, Z., & Wang, X. (2012). A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF–ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta, 94, 257–262. https://doi.org/10.1016/j.talanta.2012.03.036
dc.relationGuyot, P. (2008). Colloidal quantum dots. Comptes Rendus Physique, 9(8), 777–787. https://doi.org/10.1016/j.crhy.2008.10.006
dc.relationHestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345–352. https://doi.org/10.1042/bj0580345
dc.relationHosseini, M., Ganjali, M. R., Vaezi, Z., Faridbod, F., Arabsorkhi, B., & Sheikhha, M. H. (2014). Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 116–120. https://doi.org/10.1016/j.saa.2013.10.074
dc.relationHuang, X., Tong, X., & Wang, Z. (2020). Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology, 100018. https://doi.org/10.1016/j.jnlest.2020.100018
dc.relationIDEAM. (2019). Estudio Nacional del Agua 2018 (pp. 229–232). http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdf
dc.relationIDEAM, & INVEMAR. (2018). Protocolo de Monitoreo del Agua (pp. 76–77).
dc.relationImran, M., Jawwad, M., Kuznetsov, A., Idrees, N., Iqbal, J., & Ali, A. (2019). Computational investigations into the structural and electronic properties of CdnTen (n=1–17) quantum dots. The Royal Society of Chemistry, 9, 5091–5099. https://doi.org/10.1039/c8ra09465a
dc.relationJaiswal, J. K., & Simon, S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology, 14(9), 497–504. https://doi.org/10.1016/j.tcb.2004.07.012
dc.relationJang, Y., Shapiro, A., Isarov, M., Rubin-Brusilovski, A., Safran, A., Budniak, A., Horani, F., Dehnel, J., Sashchiuk, A., & Lifshitz, E. (2017). Interface control of electronic and optical properties in IV-VI and II-VI core/shell coloidal quantum dots: A review. Chemical Communications, 53(6), 1002–1024. https://doi.org/10.1039/C6CC08742F
dc.relationJiao, Z., Zhang, P., Chen, H., Li, C., Chen, L., Fan, H., & Cheng, F. (2019). Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sensors and Actuators B: Chemical, 295, 110–116. https://doi.org/10.1016/j.snb.2019.05.059
dc.relationJiménez-López, J., Rodrigues, S. S. M., Ribeiro, D. S. M., Ortega-Barrales, P., Ruiz-Medina, A., & Santos, J. L. M. (2019). Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 212, 246–254. https://doi.org/10.1016/j.saa.2019.01.005
dc.relationJoseph, L., Jun, B.-M., Flora, J. R. V, Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198
dc.relationKamide, K. (2005). 1- Introduction. En K. Kamide (Ed.), Cellulose and Cellulose Derivatives (pp. 1–23). Elsevier Science. https://doi.org/10.1016/B978-044482254-3/50003-5
dc.relationKilina, S., Ivaniv, S., & Tretiak, S. (2009). Effect of Surface Ligands on Optical and Electronic Spectra of Semiconductor Nanoclusters. Journal of the American Chemical Society, 131(22), 7717–7726. https://doi.org/10.1021/ja9005749
dc.relationKilina, S., Tamukong, P., & Kilin, D. (2016). Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. American Chemical Society, 49, 2127–2135. https://doi.org/10.1021/acs.accounts.6b00196
dc.relationKim, J., Oh, J. S., Park, K. C., Gupta, G., & Lee, C. Y. (2019). Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorganica Chimica Acta, 486, 69–73. https://doi.org/10.1016/j.ica.2018.10.025
dc.relationKuang, Y., Wang, X., Tian, X., Yang, C., Li, Y., & Nie, Y. (2019). Silica-embedded CdTe quantum dots functionalized with rhodamine derivative for instant visual detection of ferric ions in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 372, 140–146. https://doi.org/10.1016/j.jphotochem.2018.12.015
dc.relationKumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364
dc.relationKuznetsov, A., & Beratan, D. (2014). Structural and Electronic Properties of Bare and Capped Cd33Se33 and Cd33Te33 Quantum Dots. American Chemical Society, 118, 7094–7109. https://doi.org/10.1021/jp4007747
dc.relationLabeb, M., Sakr, A.-H., Soliman, M., Abdel-Fattah, T. M., & Ebrahim, S. (2018). Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions. Optical Materials, 79, 331–335. https://doi.org/10.1016/j.optmat.2018.03.060
dc.relationLefebvre, P., Richard, T., Allègre, J., Mathieu, H., Pradel, A., Marc, J., Boudes, L., Granier, W., & Ribes, M. (1994). Sol-Gel preparation and optical characterization of sodium borosilicate glasses doped with II-VI semiconductor nanocrystals. Proceedings of SPIE - The International Society for Optical Engineering, 2288, 163–173. https://doi.org/10.1117/12.188948
dc.relationLiu, J., Lv, G., Gu, W., Li, Z., Tang, A., & Mei, L. (2017). A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water. Journal of Materials Chemistry C, 5(20), 5024–5030. https://doi.org/10.1039/c7tc00935f
dc.relationLiu, S., Wang, Y.-M., & Han, J. (2017). Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 32, 78–103. https://doi.org/10.1016/j.jphotochemrev.2017.06.002
dc.relationLiu, Z., Mo, Z., Niu, X., Yang, X., Jiang, Y., Zhao, P., Liu, N., & Guo, R. (2020). Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. Journal of Colloid and Interface Science, 566, 357–368. https://doi.org/10.1016/j.jcis.2020.01.092
dc.relationMa, Q., Ha, E., Yang, F., & Su, X. (2011). Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film. Analytica Chimica Acta, 701(1), 60–65. https://doi.org/10.1016/j.aca.2011.04.051
dc.relationMarandi, M., Emrani, B., & Zare, H. (2017). Synthesis of highly luminescent CdTe / CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Optical Materials, 69, 358–366. https://doi.org/10.1016/j.optmat.2017.04.058
dc.relationMinambiente. (2020). Nomartiva Recurso Hídrico. https://www.minambiente.gov.co/index.php/gestion-integral-del-recurso-hidrico/normativa-recurso-hidrico
dc.relationMishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005
dc.relationModlitbová, P., Novotný, K., Pořízka, P., Klus, J., Lubal, P., Zlámalová-Gargošová, H., & Kaiser, J. (2018). Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicology and Environmental Safety, 147, 334–341. https://doi.org/10.1016/j.ecoenv.2017.08.053
dc.relationNANO-SME. (2007). Aplicaciones industriales de la nanotecnología (pp. 25–41). Tresalia Comunication.
dc.relationNasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 1 - An Introduction to Nanotechnology (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 1–7). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00001-8
dc.relationNasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). Chapter 4 - Applications of Nanotechnology in Daily Life (M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, & M. Atarod (Eds.); Vol. 28, pp. 113–143). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3
dc.relationNguyen, K., Pachter, R., Jiang, J., & Day, P. N. (2018). Systematic Study of Structure, Stability, and Electronic Absorption of Tetrahedral CdSe Clusters with Carboxylate and Amine Ligands. The Journal of Pgysical Chemistry A, 122(33), 6704–6712. https://doi.org/10.1021/acs.jpca.8b02813
dc.relationOluwafemi, S., Revaprasadu, N., & Ramirez, A. (2008). A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Journal of Crystal Growth, 310(13), 3230–3234. https://doi.org/10.1016/j.jcrysgro.2008.03.032
dc.relationONU. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019 (pp. 14–17). UNESCO.
dc.relationParamanik, B., Bhattacharyya, S., & ´Patra, A. (2013). Detection of Hg2+ and F- ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QD nanocomposite. Chemistry-A European Journal, 19(19), 5980–5987. https://doi.org/10.1002/chem.201203576
dc.relationPatel, J., Jain, B., Singh, A. K., Susan, M. A. B. H., & Jean-Paul, L. (2020). Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchemical Journal, 155, 104755. https://doi.org/10.1016/j.microc.2020.104755
dc.relationPhanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004
dc.relationPloem, J. (1999). CHAPTER ONE - Fluorescence Microscopy (W. T. Mason (Ed.); pp. 3–13). Academic Press. https://doi.org/10.1016/B978-012447836-7/50003-8
dc.relationPooja, D., Saini, S., Thakur, A., Kumar, B., Tyagi, S., & Nayak, M. K. (2017). A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. Journal of Hazardous Materials, 328, 117–126. https://doi.org/10.1016/j.jhazmat.2017.01.015
dc.relationPradeep, T., & Anshup. (2009). Noble metal nanoparticles for water putification: A critical review. Thin Solid Films, 517(24), 6441–6478. https://doi.org/10.1016/j.tsf.2009.03.195
dc.relationRay, S., & Salehiyan, R. (2020). Chapter 2 - Fundamental definition and importance of nanomaterials, nanostructured, and bulk nanostructured materials (S. S. Ray & R. Salehiyan (Eds.); pp. 15–28). Elsevier. https://doi.org/10.1016/B978-0-12-816707-6.00002-X
dc.relationReshma, V. G., & Mohanan, P. V. (2019). Quantum dots: Applications and safety consequences. Journal of Luminescence, 205, 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015
dc.relationResolución 2115 de 2007 (pp. 3–4). (2007). https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdf
dc.relationResolución 631 de 2015 (Vol. 2015, pp. 13–15). (2015). https://rds.org.co/es/recursos/resolucion-631-de-2015-parametros-vertimientos
dc.relationRodrigues, S. S. M., Ribeiro, D. S. M., Soares, J. X., Passos, M. L. C., Saraiva, M. L. M. F. S., & Santos, J. L. M. (2017). Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coordination Chemistry Reviews, 330, 127–143. https://doi.org/10.1016/j.ccr.2016.10.001
dc.relationRodríguez, C. (2019). Evolución de la calidad del río vetas relacionada con la minería aurifera practicada en la provincia de soto en Santander. Universidad de Manizales. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/3413/documento maestria FINAL 18 MAYO %282%29.pdf?sequence=1&isAllowed=y
dc.relationRuiz, C., Soriano, L., & Valcárcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1–18. https://doi.org/j.trac.2016.11.007
dc.relationSafari, M., Najafi, S., Arkan, E., Amani, S., & Shahlaei, M. (2019). Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchemical Journal, 146, 293–299. https://doi.org/10.1016/j.microc.2019.01.019
dc.relationSánchez, A. (2016). Síntesis y caracterización de puntos cuánticos de PbSe con aplicaciones en celdas fotovoltaícas con configuración FTO/TiO2/CdS/PbSe/ZnS. Centro de Investigaciones en Óptica, A.C
dc.relationSCOPUS. (2020a). Documents by country or territory (Vol. 2020, Número 3 de febrero de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sort
dc.relationSCOPUS. (2020b). Documents by country or territory (Vol. 2020, Número 13 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&so
dc.relationSCOPUS. (2020c). Documents by year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=add34c41e8628b1a46cb5eecc94e8a9b&origin=resultslist&src=s&s=ALL%28%22nanomaterials%22+AND+%22pollution%22+AND+%22sensors%22+AND+%22cellulose%22+AND+%22heavy+metals%22%29&sort
dc.relationSCOPUS. (2020d). Documents by Year (Vol. 2020, Número 12 de julio de). https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/term/analyzer.uri?sid=bdefe875263a2cb84a74c9f21f346fde&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%28%22theoretical+calculations%22+OR+%22computational+chemistry%22%29+AND+%22quantum+dots%22%29&so
dc.relationShang, Z. Bin, Wang, Y., & Jin, W. J. (2009). Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta, 78(2), 364–369. https://doi.org/10.1016/j.talanta.2008.11.025
dc.relationSharma, A., Thakur, M., Bhattacharya, M., Mandal, T., & Goswami, S. (2019). Commercial application of cellulose nano-composites – A review. Biotechnology Reports, 21, e00316. https://doi.org/10.1016/j.btre.2019.e00316
dc.relationSmith, A., Duan, H., Rhyner, M., Ruan, G., & Nie, S. (2006). A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 8(33), 3895–3903. https://doi.org/10.1039/B606572B
dc.relationSong, Z., Chen, X., Gong, X., Gao, X., Dai, Q., Nguyen, T. T., & Guo, M. (2020). Luminescent carbon quantum dots/nanofibrillated cellulose composite aerogel for monitoring adsorption of heavy metal ions in water. Optical Materials, 100, 109642. https://doi.org/10.1016/j.optmat.2019.109642
dc.relationSpeakman, S. (2008). Estimating Crystallite Size Using XRD (pp. 10–12). MIT Center for Materials Science and Engineering.
dc.relationTan, K., Heo, S., Foo, M., Chew, I. M., & Yoo, C. (2019). An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Science of The Total Environment, 650(1), 1309–1326. https://doi.org/10.1016/j.scitotenv.2018.08.402
dc.relationTang, A., Liu, Y., Wang, Q., Chen, R., Liu, W., Fang, Z., & Wang, L. (2016). A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydrate Polymers, 148, 29–35. https://doi.org/10.1016/j.carbpol.2016.04.034
dc.relationTarantini, A., Wegner, K. D., Dussert, F., Sarret, G., Beal, D., Mattera, L., Lincheneau, C., Proux, O., Truffier-Boutry, D., Moriscot, C., Gallet, B., Jouneau, P.-H., Reiss, P., & Carrière, M. (2019). Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 14, 100168. https://doi.org/10.1016/j.impact.2019.100168
dc.relationTomczak, N., Jańczewski, D., Han, M., & Vancso, G. J. (2009). Designer polymer-quantum dot architectures. Progress in Polymer Science, 34(5), 393–430. https://doi.org/10.1016/j.progpolymsci.2008.11.004
dc.relationTsay, J., Pflughoefft, M., Bentolila, L., & Weiss, S. (2004). Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals. Journal of the American Chemical Society, 126(7), 1926–1927. https://doi.org/10.1021/ja039227v
dc.relationUllah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155–166. https://doi.org/10.1016/j.trac.2018.01.002
dc.relationVareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126
dc.relationVasudevan, D., Trinchi, A., Hardin, S. G., & Cole, I. S. (2015). Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots. Journal of Luminescence, 166, 88–92. https://doi.org/10.1016/j.jlumin.2015.04.043
dc.relationVázquez, M. (2016). Sondas fluorescentes acuosolubles para metales tóxicos. Universidad de Santiago de Compostela.
dc.relationWagner, A. M., Knipe, J. M., Orive, G., & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63. https://doi.org/10.1016/j.actbio.2019.05.022
dc.relationWang, L., Ma, W., Xu, L., Chen, W., Zhu, Y., Xu, C., & Kotov, N. A. (2010). Nanoparticle-based environmental sensors. Materials Science and Engineering: R: Reports, 70(3), 265–274. https://doi.org/10.1016/j.mser.2010.06.012
dc.relationWei, Q., Nagi, R., Sadeghi, K., Feng, S., Yan, E., Ki, S. J., Caire, R., Tseng, D., & Ozcan, A. (2014). Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano, 8(2), 1121–1129. https://doi.org/10.1021/nn406571t
dc.relationWhitehead, P. G., Bussi, G., Peters, R., Hossain, M. A., Softley, L., Shawal, S., Jin, L., Rampley, C. P. N., Holdship, P., Hope, R., & Alabaster, G. (2019). Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Science of The Total Environment, 697, 134090. https://doi.org/10.1016/j.scitotenv.2019.134090
dc.relationWu, Y., Sun, J., Zhang, Y., Pu, M., Zhang, G., He, N., & Zeng, X. (2017). Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor. ACS Applied Materials & Interfaces, 9(15), 13068–13078. https://doi.org/10.1021/acsami.7b02641
dc.relationXiao, J.-W., Ma, S., Yu, S., Zhou, C., Liu, P., Chen, Y., Zhou, H., Li, Y., & Chen, Q. (2018). Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 46, 45–53. https://doi.org/10.1016/j.nanoen.2018.01.035
dc.relationXu, Q., Cai, W., Li, W., Sreeprasad, T. S., He, Z., Ong, W.-J., & Li, N. (2018). Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 10, 222–240. https://doi.org/10.1016/j.mtener.2018.09.005
dc.relationXue, S., Wang, P., & Chen, K. (2020). A novel fluorescent chemosensor for detection of mercury(II) ions based on dansyl-peptide and its application in real water samples and living LNcap cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117616. https://doi.org/10.1016/j.saa.2019.117616
dc.relationYang, Y., Jiang, J., Shen, G., & Yu, R. (2009). An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Analytica Chimica Acta, 636(1), 83–88. https://doi.org/10.1016/j.aca.2009.01.038
dc.relationYu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860. https://doi.org/10.1021/cm034081k
dc.relationZeiri, N., Naifar, A., Nasrallah, S. A.-B., & Said, M. (2019). Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 36, 100725. https://doi.org/10.1016/j.photonics.2019.100725
dc.relationZhang, L., & Fang, M. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5(2), 128–142. https://doi.org/10.1016/j.nantod.2010.03.002
dc.relationZhang, M., Zhu, G., Li, T., Lou, X., & Zhu, L. (2019). A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Optics Communications. https://doi.org/10.1016/j.optcom.2019.124750
dc.relationZhang, Q., Zhang, L., Wu, W., & Xiao, H. (2019). Methods and Applications of Nanocellulose Loaded with Inorganic Nanomaterials: A review. Carbohydrate Polymers, 115454. https://doi.org/10.1016/j.carbpol.2019.115454
dc.relationZhang, Ya-nan, Sun, Y., Cai, L., Gao, Y., & Cai, Y. (2020). Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement, 107742. https://doi.org/10.1016/j.measurement.2020.107742
dc.relationZhang, Yonghong, Guo, Q., Huang, S., & Suo, F. (2016). The Adsorption of Ag on (CdTe)13 Core-Cage Nanocluster: A Computational Study. Journal of Cluster Science, 27(3), 1057–1066. https://doi.org/10.1007/s10876-016-0992-0
dc.relationZhao, Y., Xu, M., Liu, Q., Wang, Z., Zhao, L., & Chen, Y. (2018). Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Marine Pollution Bulletin, 137, 601–609. https://doi.org/10.1016/j.marpolbul.2018.10.044
dc.relationZheng, D., Zhao, P., & Zhu, L. (2019). Non-conjugated and π-conjugated functional ligands on semiconductive quantum dots. Composites Communications, 11, 21–26. https://doi.org/10.1016/j.coco.2018.10.008
dc.relationZheng, J., Gao, S., & Ying, J. (2007). Synthesis and Cell‐Imaging Applications of Glutathione‐Capped CdTe Quantum Dots. Advanced Materials, 19(3), 376–380. https://doi.org/10.1002/adma.200600342
dc.relationZhou, Z.-Q., Liao, Y.-P., Yang, J., Huang, S., Xiao, Q., Yang, L.-Y., & Liu, Y. (2020). Rapid ratiometric detection of Cd2+ based on the formation of ZnSe/CdS quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117795. https://doi.org/10.1016/j.saa.2019.117795
dc.relationZhu, C., Chen, Z., Gao, S., Goh, B. L., Samsudin, I. Bin, Lwe, K. W., Wu, Y., Wu, C., & Su, X. (2019). Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 29(6), 628–640. https://doi.org/10.1016/j.pnsc.2019.11.007
dc.relationZou, L., Gu, Z., & Sun, M. (2015). Review of the application of quantum dots in the heavy-metal detection. Toxicological & Environmental CHemistry, 97(3–4), 477–490. https://doi.org/10.1080/02772248.2015.1050201
dc.rightsAcceso cerrado
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleGeneración de Quimiosensores del Nanocomposito Celulosa Bacteriana/Puntos Cuánticos como Indicador de Contaminación por Metales Pesados en Muestras Acuosas


Este ítem pertenece a la siguiente institución