dc.creatorCalderón, Juan M.
dc.creatorMoreno, Wilfrido
dc.creatorWeitzenfeld, Alfredo
dc.date.accessioned2019-12-17T16:17:08Z
dc.date.accessioned2022-09-28T14:28:21Z
dc.date.available2019-12-17T16:17:08Z
dc.date.available2022-09-28T14:28:21Z
dc.date.created2019-12-17T16:17:08Z
dc.date.issued2015-12-15
dc.identifierhttp://hdl.handle.net/11634/20412
dc.identifierhttps://doi.org/10.1007/978-3-319-28031-8_45
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3659785
dc.description.abstractSome important applications of humanoid robots in the nearest future are elder care, search and rescue of human victims in disaster zones and human machine interaction. Humanoid robots require a variety of motions and appropriate control strategies to accomplish those applications. This work focuses on vertical jump movements with soft landing. The principal objective is to perform soft contact allowing the displacement of the Center of Mass (CoM) in the landing phase. This is achieved by affecting the nominal value of the constant parameter P in the PID controller of the knee and ankle motors. During the vertical jump phases, computed torque control is applied. Additionally, in the landing phase, a fuzzy system is used to compute a suitable value for P, allowing the robot to reduce the impact through CoM displacement. The strategy is executed on a gait robot of three Degrees of Freedom (DoF). The effect of the impact reduction is estimated with the calculations of the CoM displacement and the impact force average during the landing phase.
dc.relationDARPA, DARPA Robotics Challenge, DARPA. http://www.theroboticschallenge.org/ (2015). Accessed Jan 2015
dc.relationGeorgia, I.M.I.: A Roadmap for U.S. Robotics From Internet to Robotics. Robotics in The United State of America (2013)
dc.relationKajita, S., Nagasaki, T., Kaneko, K.,Yokoi, K.: A hop towards running humanoid biped. In: Proceedings of ICRA’04. 2004 IEEE International Conference on Robotics and Automation (2004)
dc.relationRaibert, M.H., Brown, B.H., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. Int. J. Robot. Res. (1984)
dc.relationSakka, S., Yokoi, K.: Humanoid vertical jumping based on force feedback and inertial forces optimization. In: IEEE International Conference on Robotics and Automation (2005)
dc.relationSakka, S., Sian, N.E., Yokoi, K.: Motion pattern for the landing phase of a vertical jump for humanoid robots. In: International Conference on Intelligent Robots and Systems, 2006 IEEE/RSJ (2006)
dc.relationMissura, M., Behnke, S.: Self-stable omnidirectional walking with compliant joints. In: Proceedings of 8th Workshop on Humanoid Soccer Robots, IEEE International Conference on Humanoid Robots, Atlanta, USA (2013)
dc.relationYiping, L., Wensing, P.M., Orin, D.E., Schmiedeler, J.P.: Fuzzy controlled hopping in a biped robot. In: International Conference on Robotics and Automation (ICRA), IEEE (2011)
dc.relationHester, M., Wensing, P.M., Schmiedeler, J.P., Orin, D.E.: Fuzzy control of vertical jumping with a planar biped. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2010)
dc.relationHester, M.S.: Stable Control of Jumping in a Planar Biped Robot. The Ohio State University, Ohio (2009)
dc.relationDaerden, F.: Conception and Realization of Pleated Pneumatic Artificial Muscles and Their Use as Compliant Actuation Elements. Vrije Universiteit Brussel, Belgium (1999)
dc.relationBeyl, P.,Vanderborght, B.,VanHam, R.,VanDamme,M.,Versluys, R., Lefeber, D.: Compliant actuation in new robotic applications. In: NCTAM067th National Congress on Theoretical and Applied Mechanics (2006)
dc.relationVermeulen, J.: Trajectory Generation for Planar Hopping and Walking Robots: An Objective Parameter and Angular Momentum Approach. Vrije Universiteit Brussel, Brussel (2004)
dc.relationBabič, J., Lenarčič, J.: Vertical jump: biomechanical analysis and simulation study, New Devel. Humanoid Robot. (2007)
dc.relationBabič, J., Lenarčič, J.: Optimization of biarticular gastrocnemius muscle in humanoid jumping robot simulation. Int. J. Humanoid Robot. 02, 218–234 (2006)
dc.relationUmberger, B.: Mechanics of the vertical jump and two-joint muscles: implications for training. Strength Cond. J. 20(5) (1998)
dc.relationBabič, J., Damir, O., Lenarčič, J.: Balance and control of human inspired jumping robot. In: Advances in Robot Kinematics: Mechanisms and Motion (2006)
dc.relationVukobratović,M., Borovac, B.: Zero moment point thirty five years of its life. Int. J. Humanoid Robot. 157–173 (2004)
dc.relationHunt, L.R., Renjeng, S., Meyer, G.: Global transformations of nonlinear systems. IEEE Trans. Autom. Control, 2431 (1983)
dc.relationGilbert, E.G., Joong, H.: An approach to nonlinear feedback control with aplications to robotics. IEEE Trans. Syst. Man Cybern. 879–884 (1984)
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia
dc.titleFuzzy variable stiffness in landing phase for jumping robot
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos


Este ítem pertenece a la siguiente institución