dc.creatorCastellanos, Nelson J.
dc.creatorMartinez Rojas, Zulied
dc.creatorCamargo, Hernando A.
dc.creatorBiswas, Shyam
dc.creatorGranados Oliveros, Gilma
dc.date.accessioned2019-06-18T21:47:45Z
dc.date.accessioned2022-09-28T14:25:43Z
dc.date.available2019-06-18T21:47:45Z
dc.date.available2022-09-28T14:25:43Z
dc.date.created2019-06-18T21:47:45Z
dc.date.issued2018-08-11
dc.identifierCastellanos, N. J., Martinez Rojas, Z., Camargo, H. A., Biswas, S., & Granados Oliveros, G. (2018). Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks. Bogotá: doi:10.1007/s11243-018-0271-z
dc.identifierhttp://hdl.handle.net/11634/17169
dc.identifierhttps://doi.org/10.1007/s11243-018-0271-z
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3658994
dc.description.abstractIn this work, two well-known titanium-type metal–organic framework (MOF) solids named MIL-125 and MIL-125-NH2 were successfully synthesized using a solvothermal method. The structure of the catalytic materials was confirmed by X-ray powder diffraction, infrared spectroscopy, N2 adsorption–desorption measurements, thermogravimetric analysis and UV–Vis diffuse reflectance spectroscopy analysis. An azo dye, Congo red, was used as model pollutant to study its photocatalytic activity under UV–Vis light irradiation. A comparison with the commercial TiO2 P-25 revealed both the beneficial effect of the porous structure of MOFs and the influence of the –NH2 group on the light activation process. Formation of hydroxyl radicals (·OH) by catalysts was evaluated by luminol degradation probing. Finally, the titanium MOF catalysts can be recycled and reused without significant loss of activity.
dc.relationRawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605. https ://doi.org/10.1016/J.CHEMO SPHER E.2016.04.068
dc.relationKant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 04:22–26. https ://doi.org/10.4236/ns.2012.41004
dc.relationErdemoğlu S, Aksu SK, Sayılkan F et al (2008) Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC–MS. J Hazard Mater 155:469–476. https ://doi.org/10.1016/J. JHAZM AT.2007.11.087
dc.relationSaini RD (2017) Textile organic dyes: polluting effects and elimination methods from textile waste water. Int J Chem Eng Res 9:975–6442
dc.relationBrüschweiler BJ, Merlot C (2017) Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul Toxicol Pharmacol 88:214–226. https ://doi.org/10.1016/J.YRTPH .2017.06.012
dc.relationStingley RL, Zou W, Heinze TM et al (2010) Metabolism of azo dyes by human skin microbiota. J Med Microbiol 59:108–114. https ://doi.org/10.1099/jmm.0.01261 7-0
dc.relationDas R, Bhaumik M, Giri S, Maity A (2017) Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers. Ultrason Sonochem 37:600–613. https ://doi.org/10.1016/J.ULTSO NCH.2017.02.022
dc.relationNing X, Yang C, Wang Y et al (2014) Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnol Bioprocess Eng 19:687–695. https ://doi.org/10.1007/s1225 7-013-0729-y
dc.relationYuan G-E, Li Y, Lv J et al (2017) Integration of microbial fuel cell and catalytic oxidation reactor with iron phthalocyanine catalyst for Congo red degradation. Biochem Eng J 120:118–124. https :// doi.org/10.1016/J.BEJ.2017.01.005
dc.relationSrilakshmi C, Saraf R (2016) Ag-doped hydroxyapatite as efficient adsorbent for removal of Congo red dye from aqueous solution: synthesis, kinetic and equilibrium adsorption isotherm analysis. Microporous Mesoporous Mater 219:134–144. https :// doi.org/10.1016/J.MICRO MESO.2015.08.003
dc.relationKim S-H, Choi P-P (2017) Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies. Dalton Trans 46:15470– 15479. https ://doi.org/10.1039/C7DT0 2076G
dc.relationGrassian VH (2005) Environmental catalysis. Taylor & Francis, Milton Park
dc.relationRothenberg G (2017) Catalysis: concepts and green applications. Wiley, Incorporated
dc.relationCorma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655. https ://doi.org/10.1021/cr900 3924
dc.relationKuppler RJ, Timmons DJ, Fang Q-R et al (2009) Potential applications of metal–organic frameworks. Coord Chem Rev 253:3042–3066. https ://doi.org/10.1016/J.CCR.2009.05.019
dc.relationRowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14. https ://doi.org/10.1016/J.MICRO MESO.2004.03.034
dc.relationGangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB (2016) A review on contemporary metal–organic framework materials. Inorg Chim Acta 446:61–74. https ://doi.org/10.1016/J. ICA.2016.02.062
dc.relationWang F, Wang C, Yu Z et al (2016) Two multifunctional Mn(II) metal–organic frameworks: synthesis, structures and applications as photocatalysis and luminescent sensor. Polyhedron 105:49–55. https ://doi.org/10.1016/J.POLY.2015.11.043
dc.relationCzaja AU, Trukhan N, Müller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38:1284. https ://doi. org/10.1039/b8046 80h
dc.relationde Miguel M, Ragon F, Devic T et al (2012) Evidence of photoinduced charge separation in the metal–organic framework MIL-125(Ti)–NH 2. ChemPhysChem 13:3651–3654. https ://doi. org/10.1002/cphc.20120 0411
dc.relationAlvaro M, Carbonell E, Ferrer B et al (2007) Semiconductor behavior of a metal–organic framework (MOF). Chem A Eur J 13:5106–5112. https ://doi.org/10.1002/chem.20060 1003
dc.relationPassalacqua R, Perathoner S, Centi G (2017) Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. J Energy Chem 26:219–240. https ://doi.org/10.1016/J. JECHE M.2017.03.004
dc.relationWen M, Mori K, Kuwahara Y et al (2017) Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl Catal B Environ 218:555–569. https ://doi. org/10.1016/J.APCAT B.2017.06.082
dc.relationKumar P, Vellingiri K, Kim K-H et al (2017) Modern progress in metal–organic frameworks and their composites for diverse applications. Microporous Mesoporous Mater 253:251–265. https :// doi.org/10.1016/J.MICRO MESO.2017.07.003
dc.relationZhu J, Maza WA, Morris AJ (2017) Light-harvesting and energy transfer in ruthenium(II)-polypyridyl doped zirconium(IV) metal– organic frameworks: a look toward solar cell applications. J Photochem Photobiol A Chem 344:64–77. https ://doi.org/10.1016/J. JPHOT OCHEM .2017.04.025
dc.relationSu Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO- 66-NH2 nanocomposites as efficient and stable visible-lightdriven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B Environ 200:448–457. https ://doi.org/10.1016/J.APCAT B.2016.07.032
dc.relationCui J-W, Hou S-X, Li Y-H, Cui G-H (2017) A multifunctional Ni(ii) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Trans 46:16911–16924. https ://doi.org/10.1039/ C7DT0 3874G
dc.relationKang W-C, Li Y-H, Qin Z-B, Cui G-H (2018) Synthesis, structures and characterization of two cobalt(II) coordination polymers with 2,5-dichloroterephthalic acid and flexible bis(benzimidazole) ligands. Transit Met Chem. https ://doi.org/10.1007/s1124 3-018-0242-4
dc.relationLi J-X, Qin Z-B, Li Y-H, Cui G-H (2018) Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrason Sonochem 48:127–135. https ://doi. org/10.1016/J.ULTSO NCH.2018.05.016
dc.relationDu J-J, Yuan Y-P, Sun J-X et al (2011) New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951. https ://doi. org/10.1016/J.JHAZM AT.2011.04.029
dc.relationZhao H, Xia Q, Xing H et al (2017) Construction of pillaredlayer MOF as efficient visible-light photocatalysts for aqueous Cr(VI) reduction and dye degradation. ACS Sustain Chem Eng 5:4449–4456. https ://doi.org/10.1021/acssu schem eng.7b006 41
dc.relationGuesh K, Caiuby CAD, Mayoral Á et al (2017) Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst Growth Des 17:1806–1813. https ://doi.org/10.1021/acs.cgd.6b017 76
dc.relationZhu J, Li P-Z, Guo W et al (2018) Titanium-based metal–organic frameworks for photocatalytic applications. Coord Chem Rev 359:80–101. https ://doi.org/10.1016/J.CCR.2017.12.013
dc.relationAlver E, Bulut M, Metin AÜ, Çiftçi H (2017) One step effective removal of Congo Red in chitosan nanoparticles by encapsulation. Spectrochim Acta Part A Mol Biomol Spectrosc 171:132–138. https ://doi.org/10.1016/J.SAA.2016.07.046
dc.relationMa C, Wang F, Zhang C et al (2017) Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr–TiO2 layered double hydroxide. Chemosphere 168:80–90. https ://doi. org/10.1016/J.CHEMO SPHER E.2016.10.063
dc.relationWang H, Yuan X, Wu Y et al (2015) Facile synthesis of aminofunctionalized titanium metal–organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J Hazard Mater 286:187–194. https ://doi.org/10.1016/J.JHAZM AT.2014.11.039
dc.relationLowell S, Lowell S (2004) Characterization of porous solids and powders: surface area, pore size, and density. Kluwer Academic Publishers, Berlin
dc.relationThommes M, Cychosz KA (2014) Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20:233–250. https ://doi.org/10.1007/s1045 0-014-9606-z
dc.relationThommes M (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chem Int 38:25. https ://doi.org/10.1515/ ci-2016-0119
dc.relationVargas WE, Niklasson GA (1997) Applicability conditions of the Kubelka–Munk theory. Appl Opt 36:5580. https ://doi. org/10.1364/AO.36.00558 0
dc.relationEssick JM, Mather RT (1993) Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment. Am J Phys 61:646–649. https ://doi. org/10.1119/1.17173
dc.relationVermoortele F, Maes M, Moghadam PZ et al (2011) P-xyleneselective metal–organic frameworks: a case of topology-directed selectivity. J Am Chem Soc 133:18526–18529. https ://doi. org/10.1021/ja207 287h
dc.relationDan-Hardi M, Serre C, Frot T et al (2009) A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859. https ://doi.org/10.1021/ja903 726m
dc.relationFu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal–organic framework photocatalyst with visiblelight- induced activity for CO2 reduction. Angew Chemie Int Ed 51:3364–3367. https ://doi.org/10.1002/anie.20110 8357
dc.relationHatchard CG, Parker CA (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc A Math Phys Eng Sci 235:518–536. https :// doi.org/10.1098/rspa.1956.0102
dc.relationHarris GD, Dean Adams V, Moore WM, Sorensen DL (1987) Potassium ferrioxalate as chemical actinometer in ultraviolet reactors. J Environ Eng 113:612–627. https ://doi.org/10.1061/ (ASCE)0733-9372(1987)113:3(612)
dc.relationHirakawa T, Nosaka Y (2002) Properties of O2 ·− and OH · formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254. https ://doi.org/10.1021/la015 685a
dc.relationGranados-Oliveros G, Páez-Mozo EA, Ortega FM et al (2009) Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl Catal B Environ 89:448– 454. https ://doi.org/10.1016/J.APCAT B.2009.01.001
dc.relationSzychliński J, Bilski P, Martuszewski K, Blażejowski J (1989) Complementary study on the use of the potassium Reinecke’s salt as a chemical actinometer. Analyst 114:739–741. https ://doi. org/10.1039/AN989 14007 39
dc.relationMcKinstry C, Cathcart RJ, Cussen EJ et al (2016) Scalable continuous solvothermal synthesis of metal organic framework (MOF- 5) crystals. Chem Eng J 285:718–725. https ://doi.org/10.1016/J. CEJ.2015.10.023
dc.relationBellamy L (1963) Infrared spectra of complex Molecules. Springer, Netherlands
dc.relationGomes Silva C, Luz I, Llabrés i Xamena FX et al (2010) Water stable Zr-Benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem A Eur J 16:11133– 11138. https ://doi.org/10.1002/chem.20090 3526
dc.relationYang L, Kruse B (2004) Revised Kubelka–Munk theory I theory and application. J Opt Soc Am A 21:1933. https ://doi.org/10.1364/ JOSAA .21.00193 3
dc.relationNowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80:046107. https ://doi. org/10.1063/1.31036 03
dc.relationJahan F, Islam MH, Smith BE (1995) Band gap and refractive index determination of Mo-black coatings using several techniques. Sol Energy Mater Sol Cells 37:283–293. https ://doi. org/10.1016/0927-0248(95)00021 -6
dc.relationLin H, Huang CP, Li W et al (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11. https ://doi.org/10.1016/J.APCAT B.2006.07.018
dc.relationGhosal R, Smith DM (1996) Micropore characterization using the Dubinin–Astakhov equation to analyze high pressure CO2 (273 K) adsorption data. J Porous Mater 3:247–255. https ://doi. org/10.1007/BF011 37914
dc.relationGil A, Grange P (1996) Application of the Dubinin–Radushkevich and Dubinin–Astakhov equations in the characterization of microporous solids. Colloids Surf A Physicochem Eng Asp 113:39–50. https ://doi.org/10.1016/0927-7757(96)81455 -5
dc.relationNavarro Amador R, Carboni M, Meyer D (2016) Photosensitive titanium and zirconium metal organic frameworks: current research and future possibilities. Mater Lett 166:327–338. https ://doi.org/10.1016/J.MATLE T.2015.12.023
dc.relationLi Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2- coated activated carbon and kinetic study. Water Res 40:1119–1126. https ://doi.org/10.1016/J.WATRE S.2005.12.042
dc.relationHuang Y-B, Liang J, Wang X-S, Cao R (2017) Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157. https ://doi. org/10.1039/C6CS0 0250A
dc.relationIzumi I, Fan F-RF, Bard AJ (1981) Heterogeneous photocatalytic decomposition of benzoic acid and adipic acid on platinized titanium dioxide powder. The photo-Kolbe decarboxylative route to the breakdown of the benzene ring and to the production of butane. J Phys Chem 85:218–223. https ://doi.org/10.1021/j1506 03a00 2
dc.relationWei T-Y, Wan C (1992) Kinetics of photocatalytic oxidation of phenol on TiO2 surface. J Photochem Photobiol A Chem 69:241– 249. https ://doi.org/10.1016/1010-6030(92)85284 -2
dc.relationPichat P, Guillard C, Amalric L et al (1995) Assessment of the importance of the role of H2O2 and O2o − in the photocatalytic degradation of 1,2-dimethoxybenzene. Sol Energy Mater Sol Cells 38:391–399. https ://doi.org/10.1016/0927-0248(94)00231 -2
dc.relationGranados-Oliveros G, Torres E, Zambrano M et al (2018) Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation. Res Chem Intermed 44:3407–3424. https ://doi.org/10.1007/s1116 4-018-3315-2
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleCongo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos


Este ítem pertenece a la siguiente institución