dc.contributorCandela Soto, Angélica María
dc.creatorPérez Niño, Laura Marcela
dc.date.accessioned2020-12-01T20:30:14Z
dc.date.available2020-12-01T20:30:14Z
dc.date.created2020-12-01T20:30:14Z
dc.date.issued2020-11-30
dc.identifierPérez Niño, L. M. (2020). Síntesis y caracterización del complejo órgano-mineral (Metoprolol Succinato- montmorillonita) para la liberación controlada del Metoprolol Succinato [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia.
dc.identifierhttp://hdl.handle.net/11634/31009
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractDue to the current need to prolong the action of a drug and reduce the side effects that can be generated in the patient, because the active principle remains in the bloodstream, sometimes in a maximum concentration value that represents a toxic level for the organism, many scientific investigations have been developed that focus on the implementation of systems that cover the needs outlined above, thus giving rise to controlled release systems. These systems have the benefit of minimizing the amount of drug that is needed, since the release of the active principle is controlled and its concentration in the blood is optimal, thus achieving greater absorption. In this research work, the synthesis of the organo-mineral complexes Metoprolol Succinate (MPS) -montmorillonite (MMT) was carried out at different pH values (6 and 8), because pH is a determining factor in the intercalation of Metoprolol Succinate in montmorillonite. The presence of Metoprolol Succinate in the interlaminar space of the montmorillonite was determined by XRD of polycrystalline samples, and different complementary analytical techniques (UV-Vis, FTIR and SEM), obtaining as a result that MPS was introduced into the montmorillonite, where the largest incorporation of the drug occurred at pH 6, and these interactions are due to hydrogen bonds formed and ion-dipole interactions that occur between the amine group of the MPS and the interlayer layers of the negatively charged montmorillonite. Finally, the drug release kinetic profile was performed in the MPS-MMT complex synthesized at pH 8, through an in vitro study with buffer solutions of pH 1.4 and 7.2, for the simulation of gastric and intestinal fluids, respectively.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Química Ambiental
dc.publisherFacultad de Química Ambiental
dc.relationAyala, C. Brunetto, M. Ovalles, F. Gallianani, M. (2009). Determination of atenolol in pharmaceutical dosages by Fourier Transform Infrared Spectrometry (FTIR). Rev. Téc. Ing. Univ. Zulia, 32(3), 238 – 248.
dc.relationAkter, M. Banik, S. Hossain, M. (2012). In Vitro Evaluation of Oral Extended Release Drug Delivery System for Metoprolol Succinate Using Kollidon SR. Journal of Applied Pharmaceutical Science, 2(5), 188-192. doi: 10.7324/JAPS.2012.2539
dc.relationBermejo, R. Moreno, A. (2014). Análisis instrumental. Madrid, España: Editorial Síntesis.
dc.relationBhowmik, D. Gopinath, H. Kumar, B. Duraivel, S. Sampath, K. (2012). Controlled Release Drug Delivery Systems. The pharma innovation journal, 1 (10), 24-32.
dc.relationBonilla, J. (2012). Síntesis y caracterización del complejo órgano-mineral (atenolol-montmorillonita): proyección hacia una liberación modificada de fármacos [Tesis de pregrado]. Universidad Industrial de Santander, Bucaramanga, Colombia.
dc.relationBugay, E. Findlay, W. (2002). Handbook of Pharmaceutical Analysis. New York, Estados Unidos: Marcek Dekker, Inc.
dc.relationCastell, J. (2005). El metabolismo de fármacos, generación de metabolitos reactivos y su papel en el origen de las reacciones inmunológicas a fármacos. Consultado el día 29 de junio de 2019 de la Universidad de Valencia: https://www.uv.es/jcastell/Metabolismo_de_farmacos.pdf
dc.relationChen, E. Liu, W. Medigo, L. Diez, P. Fuentes, M. Fager, C. Olsson, E. Gessner, I. Mathur, S. (2018). Nanotechnologies in Preventive and Regenerative Medicine. An Emerging Big Picture Micro and Nano Technologies, 207-297. doi: https://doi.org/10.1016/B978-0-323-48063-5.00003-4
dc.relationDatta, M. Kaur, M. (2014). In vitro release of sodium diclofenac from poloxamer 188 modified. International Journal of Pharmacy and Pharmaceutical Sciences, 6(5), 100-110.
dc.relationDash, S. Murthy, P. Nath, L. Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta poloniae pharmaceutica, 67(3), 217-23.
dc.relationEssays UK. (2018). Development of Controlled Drug Delivery Systems (CDDS). Consultado el día 18 de marzo de 2020 de Essays UK: https://www.ukessays.com/essays/chemistry/development-controlled-drug-delivery-systems-7180.php
dc.relationFDA. (2006). Metoprolol Succinate. Consultado el día 19 de enero de 2020 de la FDA: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/019962s032lbl.pdf
dc.relationFripiat, J. (1976). Interacción agua-arcilla. Consultado el día 6 de julio de 2020 de Connecting repositories: https://core.ac.uk/download/pdf/228612073.pdf
dc.relationGador S.A. (2012). Atenolol 25-50-100 mg comprimidos. Consultado el día 30 de junio de 2019 de Gador S.A: https://www.gador.com.ar/wp-content/uploads/2015/03/G00072701-15-Atenolol-25-50-100-uv.pdf
dc.relationGarcía, E. Suarez, M. (s.f). Las arcillas: propiedades y usos. Consultado el día 30 de junio de 2019 de la Universidad de Salamanca: http://campus.usal.es/~delcien/doc/GA.PDF
dc.relationGieseking, J. (1975). Soil Components (Vol. 2, inorganic components). New York, Estados Unidos: Springer-VerIag.
dc.relationGómez, M. Campos, A. (2009). Histología, Embriología e Ingeniería Tisular Bucodental. (3ª ed). México D.F, México: Editorial Médica Panamericana, S.A de C.V.
dc.relationGrassi, M. Grassi, G. (2005). Mathematical Modelling and Controlled Drug Delivery: Matrix Systems. Current Drug Delivery, 2(1), 97–116. doi: 10.2174/1567201052772906
dc.relationGrassi, M. Lapasin, R. Pricl, S. (1999). The effect of drug dissolution on drug release from swelling polymeric matrices: mathematical modeling. Chemical Engineering Communications, 173(1), 147–173. doi: 10.1080/00986449908912782
dc.relationGutiérrez, G. (2010). Oxydation of Clay Nanoreinforced Polyolefins [Tesis de doctorado]. Institut des sciences et technologies, Paris, Francia. Disponible en el sitio web: https://pastel.archives-ouvertes.fr/pastel-00550432/document
dc.relationInternational Union of Crystallography. (2006). International Tables for Crystallography. Wiley Online Library. doi: 10.1107/97809553602060000001
dc.relationJobin, G. Cortot, A. Godbillon, J. Duval, M. Schoeller, J. Hirtz, J. Bernier, J. (1985). Investigation of drug absorption from the gastrointestinal tract of man. I. Metoprolol in the stomach, duodenum and jejunum. British Journal of Clinical Pharmacology, 19(S2), 97S–105S. doi: 10.1111/j.1365-2125.1985.tb02749.x
dc.relationJoshi, G. Kevadiya, B. Patel, H. Bajaj, H. Jasra, R. (2009). Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. International Journal of Pharmaceutics, 374 (1), 53-57. doi: https://doi.org/10.1016/j.ijpharm.2009.03.004
dc.relationKant, A. Datta, M. (2016). Organo Montmorillonite as drug delivery vehicle for the extended release of an antibiotic drug. World Journal of Pharmaceutical Research, 6(1), 574-586. doi: 10.20959/wjpr20171-7555
dc.relationKant, A. Datta, M. (2018). Montmorillonite used as an extended release delivery vehicle and increase bioavailability for metoprolol tartrate: an antihypertensive drug. World Journal of Pharmaceutical Research, 7 (13), 814-833.
dc.relationKavousi, F. Goodarzi, M. Ghanbari, D. Hedayati, K. (2019). Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. Journal of molecular structure, 1183, 324-330. doi: https://doi.org/10.1016/j.molstruc.2019.02.003
dc.relationKrishna, C. Beeravelli, S. Medikonda, J. Subrahmanyam, J. Murthy, V. (2014). Badam gum: a natural polymer in mucoadhesive drug delivery. Design, optimization, and biopharmaceutical evaluation of badam gum-based metoprolol succinate buccoadhesive tablets. Drug Delivery, 23(1), 195-206. doi: 10.3109/10717544.2014.908979
dc.relationLi, Z. Chang, P. Jiang, W. Jean, J. (2019). The multi-mechanisms and interlayer configurations of metoprolol uptake on montmorillonite. Chemical Engineering Journal, 360, 325-333. doi: https://doi.org/10.1016/j.cej.2018.11.230
dc.relationLlarena, Z. (2016). Pharmacokinetic derivation of rates and orders of reactions in multicompartment model using matlab. International Journal of Pharmaceutical Sciences and Research, 7 (11), 4456-4460. doi: http://dx.doi.org/10.13040/IJPSR.0975-8232.7 (11).4456-60
dc.relationLoftsson, T. (2015). Essential Pharmacokinetics: A Primer for Pharmaceutical Scientists. Londres, Inglaterra: Academic Press
dc.relationMacías, M. Pinilla, A. Henao, J. Cerezo, M. Aguzzi, C. Viseras, C. (2008). Caracterización del Sistema Montmorillonita-Glicina para su Empleo en Liberación Controlada. Macla revista de la sociedad española de mineralogía, 9, 149-150.
dc.relationMaina, E. Wanyika, H. Gacanja, A. (2016). Natural Pyrethrum Extracts Photo-stabilized with Organo Clays. Journal of Scientific Research & Reports, 9(7), 1-20.
dc.relationMalekjani, N. Jafari, S. (2020). Release and Bioavailability of Nanoencapsulated Food Ingredients. Inglaterra: Academic Press.
dc.relationMeunier, A. (2005). Clays. Berlin, Alemania: Springer-Verlag Berlin Heidelberg.
dc.relationNaskar, S. Sharma, S. Kuotsu, K. (2019). Formulation, characterization and antihypertensive activity of metoprolol succinate loaded gelatin nanoparticles. Journal of Drug Delivery Science and Technology, 53, 101-214. doi: https://doi.org/10.1016/j.jddst.2019.101214
dc.relationPaoli, P. Rossi, P. Macedi, E. Ienco, A. Chelazzi, L. Bartolucci, G. Bruni, B. (2016). Similar but Different: The Case of Metoprolol Tartrate and Succinate Salts. Crystal Growth & Design, 16(2), 789-799. doi: https://doi.org/10.1021/acs.cgd.5b01383
dc.relationParmar, R. Parikh, R. Vidyasagar, G. Patel, D. Patel, C. Patel, B. (2009). Pulsatile Drug Delivery Systems: An Overview. International Journal of Pharmaceutical Sciences and Nanotechnology, 2(3), 605-614.
dc.relationPlinio, A. Sandoval, H. Baena, Y. Aragón, M. Rosas, J. D’León, L. (2008). Mecanismos generales de cesión de principios activos a partir de matrices monolíticas hidrofílicas preparadas con éteres de celulosa. Revista Colombiana de Ciencias Químico-Farmacéuticas, 37(2), 105-121.
dc.relationRang, H. Dale, M. Ritter, J. Flower, R. Henderson, G. (2007). Pharmacology. (6a ed). Londres, Inglaterra: Churchill Livingstone.
dc.relationRojtanatanya, S. Pongjanyakul, T. (2010). Propranolol–magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. International Journal of Pharmaceutics, 383(1-2), 106–115. doi: 10.1016/j.ijpharm.2009.09.016
dc.relationSarier, N. Onder, E. Ersoy, S. (2010). The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371 (1-3), 40-49. doi: https://doi.org/10.1016/j.colsurfa.2010.08.061
dc.relationSaurí, J. Millán, D. Suñé, J. Colom, H. Ticó, J. Miñarro, M. Pérez, P. García, E. (2014). Quality by Design approach to understand the physicochemical phenomena involved in controlled release of captopril SR matrix tablets. International Journal of Pharmaceutics, 477 (1-2), 431-441. doi: https://doi.org/10.1016/j.ijpharm.2014.10.050
dc.relationSeema. Datta, M. (2013). In vitro sustained delivery of atenolol, an antihypertensive drug using naturally occurring clay mineral montmorillonite as a carrier. European Chemical Bulletin, 2(11), 942-951. doi: 10.17628/ECB.2013.2.942
dc.relationShargel, L. Wu-Pong, S. Yu, A. (2012). Applied biopharmaceutics & pharmacokinetics. (6a ed). New York, Estados Unidos: McGraw-Hill Education/Medical.
dc.relationSkoog, D. Holler, F. Crouch, S. (2008). Principios de análisis instrumental. (8a ed). México D.F, México: Editorial Cengage Learning editors S.A de C.V.
dc.relationStringer, J. (2011). Basic Concepts in Pharmacology: What You Need to Know for Each Drug Class. (4a ed). California, Estados Unidos: McGraw-Hill Medical.
dc.relationTejada, C. Quiñonez, E. Peña, M. (2014). Contaminantes emergentes en aguas: metabolitos de fármacos una revisión. Facultad de Ciencias Básicas, 10 (1), 80-101.
dc.relationTiwari, R. (2016). Controlled release drug formulation in pharmaceuticals: a study on their application and properties. World Journal of Pharmaceutical Research, 5(2), 1704-1720.
dc.relationUddin, F. (2018). Montmorillonite: An introduction to properties and utilization. Current Topics in the Utilization of Clay in Industrial and Medical Applications, 1, 1-23. doi: http://dx.doi.org/10.5772/intechopen.77987
dc.relationUniversidad de Navarra. (2005). Formas farmacéuticas de liberación modificada y estereoisómeros. Boletín de Información Farmacoterapéutica de Navarra, 13(1), 1-9.
dc.relationVargas, Y. Gómez, V. Vázquez, E. García, A. Aguilar, G. Murrieta, H. Salmon, M. (2008). Caracterización espectroscópica, química y morfológica y propiedades superficiales de una montmorillonita mexicana. Revista Mexicana de Ciencias Geológicas, 25(1), 135-144.
dc.relationVilla, I. (2017). Estudio ‘‘in vitro” de la cinética de hinchamiento y liberación de venlafaxina a partir de hidrogeles de quitosano utilizando genipina como agente reticulante [Tesis de pregrado]. Universidad ICESI, Santiago de Cali, Colombia. Disponible en el sitio web: https://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/83015/1/TG01788.pdf
dc.relationVora, B. Parmar, R. Nayak, P. Shah, D. (2012). Development and validation of the simultaneous Uv spectrophotometric method for estimation of metoprolol succinate and olmesartan medoxomil in the tablet dosage form. Pharmaceutical Methods, 3(1), 44–47. doi: 10.4103/2229-4708.97724
dc.relationWang, C. Li, Z. Jiang, W. Jean, J. Liu, C. (2010). Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. Journal of Hazardous Materials, 183 (1-3), 309-314. doi: https://doi.org/10.1016/j.jhazmat.2010.07.025
dc.relationWeser, J. (1979). Drug therapy: Metoprolol. The New England journal of medicine, 301(13), 698-703.
dc.relationZhang, X. Cresswell, M. (2016). Alternative Inorganic Systems for Controlled Release Applications. Inorganic Controlled Release Technology, 189–219. doi: http://dx.doi.org/10.1016/B978-0-08-099991-3.00007-7
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSíntesis y caracterización del complejo órgano-mineral (Metoprolol Succinato- montmorillonita) para la liberación controlada del Metoprolol Succinato.


Este ítem pertenece a la siguiente institución