dc.contributorZapata Saad, Andrés José
dc.contributorhttps://orcid.org/0000-0002-7270-3034
dc.contributorhttps://scholar.google.com/citations?hl=es&user=U3ngiMwAAAAJ
dc.contributorUniversidad Santo Tomás
dc.creatorVargas Velasco, Diego Fernando
dc.date.accessioned2022-02-05T14:55:10Z
dc.date.available2022-02-05T14:55:10Z
dc.date.created2022-02-05T14:55:10Z
dc.date.issued2022-01-31
dc.identifierVargas Velasco, D. F. (2022). Diseño de la planta motriz eléctrica para la avioneta Diamond DA50-RG. Bogotá D.C. [Trabajo de Pregrado, Universidad Santo Tomás]. Repositorio institucional - Universidad Santo Tomás
dc.identifierhttp://hdl.handle.net/11634/43046
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractNowadays, aviation has been directed to the search for alternatives that reduce the environmental impact caused by the burning of fossil fuels. One option that has been of growing interest in recent decades is to replace traditional combustion engines with electric motors since they do not produce emissions and are highly efficient. The first examples of this have been in light aircraft or small planes due to the ease and simplicity that they provide to carry out the change of the engine. For this, it is necessary to follow a design process, which consists of adapting an electric motor together with the propeller to its new work. Similarly, these modifications will involve flight tests to check if the performance of the aircraft has been negatively affected. The design process of the electric power plant for the Diamond DA50-RG light aircraft began with the selection of the engine through a decision matrix taking into account the specifications of the aircraft's combustion engine. After that, the propeller was selected with the blade element theory, in which different propellers were tested until finding the most suitable for the established case. Finally, an analysis was performed to examine the performance of the plant under different conditions. The results showed that the maximum speed of the aircraft decreased from 93 m/s to 88 m/s. A reduction of 154 kg of weight was obtained thanks to the change of the engine. The new power plant allows to generate an amount of thrust equivalent to ¼ or more of the maximum takeoff weight of the aircraft.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Mecánica
dc.publisherFacultad de Ingeniería Mecánica
dc.relationAcebal, C. (2019). Alice, el primer avión 100% eléctrico para pasajeros. https://www.expansion.com/fueradeserie/motor/2019/08/07/5d31aeac468aeba67c8b466f.html
dc.relationArdila Diaz, M. A., & Lucio Oliveros, R. A. (2011). Desarrollo de una Metodología de Diseño de una Hélice Contra Rotatoria para Motores de Categoria FAR 25. Universidad de San Buenaventura.
dc.relationBBC News Mundo. (2019). Cambio climático: ¿cuál es el medio de transporte que más contamina? https://www.bbc.com/mundo/noticias-49461967
dc.relationBird, J. J., & Langelaan, J. W. (2017). Design space exploration for hybrid solar/soaring aircraft. 17th AIAA Aviation Technology, Integration, and Operations Conference, June, 1–11. https://doi.org/10.2514/6.2017-4092
dc.relationBrandt, J. B., Deters, R. W., Ananda, G. K., Dantsker, O. D., & Selig, M. S. (s/f). UIUC Propeller Data Site. Recuperado el 15 de octubre de 2021, de https://m-selig.ae.illinois.edu/props/propDB.html
dc.relationCengel, Y. A., & Boles, M. A. (2012). Termodinámica. En Monografía De Enseñanza De La Ingeniería Térmica Y De Fluídos (7a ed). McGraw Hill.
dc.relationContinental Aerospace Technologies. (2021). Continental CD-300 Jet-A Engine. http://www.continental.aero/diesel/engines/cd300.aspx
dc.relationCrane, D. (1991). Dictionary of aeronautical terms (2a ed). Aviation Supplies & Academics, Inc.
dc.relationCrooker, F. B., & Arendt, M. (1910). Electric motors. Their action, control and application (1a ed). D. Van Nostrand Company.
dc.relationDe La Sierra Rivas, F. (2014). Selección de una Hélice para una Aeronave Eléctrica [Universidad Politécnica de Madrid]. http://www.mep.go.cr/sites/default/files/barajas_fonologicas.pdf
dc.relationDiamond Aircraft Industries. (s/f). DA50 RG. Recuperado el 4 de octubre de 2021, de https://www.diamondaircraft.com/en/private-pilots/aircraft/da50/overview/
dc.relationDigiSky. (s/f). SkySpark. Recuperado el 21 de septiembre de 2021, de http://www.skyspark.eu/web/ita/index.php
dc.relationEG&G Technical Services, I. (2004). Fuel Cell Handbook (Seventh Edition). En U.S. Department of Energy. https://doi.org/10.1016/s0031-9422(00)82398-5
dc.relationEhsani, M., Gao, Y., Gay, S. E., & Emadi, A. (2005). Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design (1a ed). CRC Press LLC.
dc.relationENvironmentally Friendly Inter City Aircraft powered by Fuel Cells (ENFICA-FC). (2011). Politecnico di Torino. http://www.enfica-fc.polito.it/
dc.relationExtra 330LE Electric Aircraft - Aerospace Technology. (s/f). Recuperado el 4 de septiembre de 2021, de https://www.aerospace-technology.com/projects/extra-330le-electric-aircraft/
dc.relationFederal Aviation Administration. (1976). Airframe & Powerplant Mechanics. U. S. Department of Transportation.
dc.relationFederal Aviation Administration. (2016). Pilot ’ s Handbook of Aeronautical Knowledge. En Pilot’s Handbook of Aeronautical Knowledge. U. S. Department of Transportation.
dc.relationFlores, L. H., & Sánchez, J. (2010). Diseño Conceptual Y Cálculo Aerodinámico De Una Pala Para Un Helicóptero Monoplaza. Instituto Politécnico Nacional.
dc.relationGuía para principiantes de propulsión. (s/f). Recuperado el 8 de septiembre de 2021, de https://www.grc.nasa.gov/WWW/k-12/airplane/bgp.html
dc.relationHepperle, M. (2018). JavaProp - Design and Analysis of Propellers. https://www.mh-aerotools.de/airfoils/javaprop.htm
dc.relationHitchens, F. E. (1942). Propeller Aerodynamics: The History, Aerodynamics & Operation of Aircraft ... - Frank Hitchens - Google Libros. Andrews UK Limited. https://books.google.com.co/books?id=PPI_CgAAQBAJ&pg=PT3&hl=es&source=gbs_toc_r&cad=4#v=onepage&q&f=false
dc.relationHughes, A. (2006). Electric Motors and Drives. En Electric Motors and Drives (3a ed). Elsevier Ltd. https://doi.org/10.1016/C2011-0-07555-5
dc.relationIATA. (2019). IATA Annual Review 2019.
dc.relationIsidoro Carmona, A. (2000). Aerodinámica y actuaciones del avió (10a ed). International Thomson Publishing.
dc.relationJavier. (2019). Primer vuelo del Sun Flyer 2 con motor eléctrico Siemens - BuckerBook Blog. https://www.buckerbook.es/blog/primer-vuelo-del-sun-flyer-2-con-motor-electrico-siemens/
dc.relationJohnson, W. (1994). Helicopter Theory. Dover Publications, INC.
dc.relationKrishnan, R. (2010). Permanent Magnet Synchronous and Brusless DC Motor Drives (1a ed). Taylor & Francis Group.
dc.relationKumar, L., & Jain, S. (2014). Electric propulsion system for electric vehicular technology: A review. Renewable and Sustainable Energy Reviews, 29, 924–940. https://doi.org/10.1016/j.rser.2013.09.014
dc.relationLukic, S. M., & Emadi, A. (2008). Charging ahead. IEEE Industrial Electronics Magazine, 2(4), 2–12. https://doi.org/10.1109/MIE.2008.930361
dc.relationMagnix. (s/f). Products | magniX. Recuperado el 9 de octubre de 2021, de https://www.magnix.aero/products
dc.relationManeus Salvador, E. (2018). Control of an electric Propulsion System for a Light Aircraft. Universitat Politècnica de València.
dc.relationMattingly, J. (1996). Elements of Gas Turbine Propulsion. En Tata McGraw-Hill (1a ed, Vol. 2005). McGraw Hill.
dc.relationMIT Thermodynamic Notes. (s/f). Performance of Propellers. Recuperado el 16 de octubre de 2021, de https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html
dc.relationPipistrel Aircraft. (s/f). E-811 EASA TC. Recuperado el 8 de octubre de 2021, de https://www.pipistrel-aircraft.com/aircraft/electric-flight/e-811/
dc.relationRaymer, D. (1992). Aircraft Design: A Conceptual Approach (2a ed). American Institute of Aeronautics and Astronautics, Inc. https://doi.org/10.2514/4.105746
dc.relationRosero, J. A., Ortega, J. A., Aldabas, E., & Romeral, L. (2007). Moving towards a more electric aircraft. IEEE Aerospace and Electronic Systems Magazine, 22(3), 3–9. https://doi.org/10.1109/MAES.2007.340500
dc.relationRTVE. (2013). Las emisiones de los aviones afectan más al aire. https://www.rtve.es/noticias/20191108/emisiones-aviones-afectan-mas-calidad-del-aire-clima/1989283.shtml
dc.relationSavoye, F., Venet, P., Millet, M., & Groot, J. (2012). Impact of Periodic Current Pulses on Li-Ion Battery Performance. IEEE Transactions on Industrial Electronics, 59(9), 3481–3488. https://doi.org/10.1504/IJEHV.2015.074670
dc.relationSelig, M. S. (s/f). UIUC Airfoil Data Site. Recuperado el 17 de octubre de 2021, de https://m-selig.ae.illinois.edu/ads/coord_database.html
dc.relationSiemens. (s/f). Electric Flight. Recuperado el 9 de octubre de 2021, de https://press.siemens.com/global/en/feature/electric-flight
dc.relationSilverstein, A. (s/f). NACA Report No. 502. NASA.
dc.relationSolar Flight. (s/f). Sunseeker II - Europe Tour and First Alps Crossing. Recuperado el 21 de septiembre de 2021, de https://www.solar-flight.com/sunseeker-ii/
dc.relationSolar Impulse Foundation. (s/f). Solar Impulse. Recuperado el 21 de septiembre de 2021, de https://solarimpulse.com/#
dc.relationSubramonium A K, N., Shetty, P., Saravanan, G., & Vivekanandan, S. (2017). Technology and Key Strategy of IE4 Permanent Magnet Brushless DC Motor Drive for Electric Vehicle Application. Journal of Engineering Research and Application, 7(2), 25–31. https://doi.org/10.9790/9622
dc.relationToliyat, H. A., & Kliman, G. B. (2004). Handbook of Electrical Motors. En Electronic Product Design. Taylor & Francis Group.
dc.relationTong, W. (2014). Mechanical Deasign of Electric Motors. Taylor & Francis Group.
dc.relationU.S. Department of Energy: Industrial Technologies Program. (2008). Improving Motor and Drive System Performance : Industrial Technologies Program, 3, 45, 46.
dc.relationUllman, D. G. (2010). The Mechanical Design Process (4a ed). McGraw Hill.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDiseño de la planta motriz eléctrica para la avioneta Diamond DA50-RG


Este ítem pertenece a la siguiente institución