dc.contributorEspinosa Buitrago, Mónica
dc.contributorhttps://scholar.google.es/citations?user=-VX8bMEAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000844969
dc.contributorhttp://scienti.colciencias.gov.co:8085/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000001433
dc.creatorRoncancio Quintana, Gina Marcela
dc.date.accessioned2018-12-14T17:03:36Z
dc.date.available2018-12-14T17:03:36Z
dc.date.created2018-12-14T17:03:36Z
dc.date.issued2018-12-10
dc.identifierRoncancio Quintana Gina Marcela. (2018). Sistema cognitivo de petición de canales disponibles en la banda de frecuencia de 470mhz a 698 mhz para el despliegue de iot
dc.identifierhttp://hdl.handle.net/11634/14715
dc.identifierM.T.R. R76si 2018
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe radio spectrum is a natural resource that allows wireless communications for telecommunications services such as television, radio broadcasting, radionavigation, among others. The spectrum is managed in accordance with the recommendations established in the International Telecommunication Union (ITU) and the regulatory institutions of each country. The management of the frequencies allocation for primary and secondary users in the radio spectrum is a process of change, taking into account that the use of spectrum has low levels of use in some frequency bands. Therefore, dynamic allocation is seen as a solution to the efficient use of spectrum for emerging telecommunications services. The increase in the use of spectrum is a consequence of emerging telecommunications services such as the Internet of Things (IoT), taking into account that these services may have a low date rate, but a massive number of devices or multimedia contents may also be available. In these services, things can be considered as objects of everyday life such as appliances, transportation, among others. In addition, the connection of the devices to the Internet allows the development of new opportunities in social, economic and environmental spheres, among others, contributing tangibly to the community through the control, management and monitoring of physical elements that composes an urban environment within a net. The research is focus on frequency bands of dynamic television that allow new opportunities for the deployment of emerging services such as IoT. Therefore, this document of work seeks to review the current regulatory status of the radio spectrum with respect to the dynamic allocation in the 470MHz to 698MHz band, the use of this band for IoT devices and the protocol-level framework of the communication of the IoT devices in a network of spectral television white spaces TVWS.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Telecomunicaciones y Regulación TIC
dc.publisherFacultad de Ingeniería de Telecomunicaciones
dc.relationD. Evans, “The internet of things: How the next evolution of the internet is changing everything,” CISCO white Pap., vol. 1, no. 2011, pp. 1–11, 2011.
dc.relationE. Summary, “Cisco Visual Networking Index : Global Mobile Data Traffic Forecast Update , 2016 – 2021,” pp. 2016–2021, 2017.
dc.relationMcLean Foster & Co. en colaboración con Martin Cave y Robert W. Jones, “Gestión del espectro radioeléctrico,” vol. 5, p. 122, 2009.
dc.relationM. D. T. D. L. I. Y. L. C. MinTIC and A. N. D. E. ANE, “Ingeniería Del Espectro Radioeléctrico,” Man. Gestión Nac. Del Espectro Radioeléctrico, p. 260, 2012.
dc.relationAgencia Nacional del Espectro and Ministerio de las Tecnologías de la Información y las Comunicaciones, “MANUAL DE GESTIÓN NACIONAL DEL ESPECTRO RADIOELÉCTRICO. Fundamentos de gestión nacional del espectro radioeléctrico.”
dc.relation“CNABF2017,” pp. 1–17, 2002.
dc.relationJ. Luque Ordóñez, “Servicios de radiocomunicaciones,” 2014.
dc.relationANE, “Manual De Gestión Nacional Del Espectro Radioeléctrico: Permisos para el uso del espectro radioeléctrico y procedimientos para la asignación de frecuencias.,” 2012.
dc.relation“Inicio.” .
dc.relationC. Moreno, A. Marín, J. Sierra, and F. Gil, “DISEÑO Y ANÁLISIS DE RED DE ℡EVISIÓN DIGITAL TERRETRE (TDT) PARA MEDELLIN-ANTIOQUIA,” Rev. en telecomunicaciones e informática, vol. 1, no. 1, 2011.
dc.relationETSI, “EN 300 744 - V1.6.1 - Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television,” Eur. Broadcast. Union, vol. 1, pp. 1–66, 2009.
dc.relationA. D. Gutiérrez, “Transmisión de señales de TV digital en el estándar terreno DVB-T,” Univ. Politécnica Madrid, 2002.
dc.relationComisión de Regulación de Comunicaciones, “Definición de las especificaciones técnicas de la TDT en Colombia.” Sep-2012.
dc.relationM. F. Muela, “Coexistencia entre servicios TDT y 4G en la banda de 700 MHz,” 2013.
dc.relationCOMISIÓN DE REGULACIÓN DE COMUNICACIONES, “Resolución CRC 4337 de 2013.” REPUBLICA DE COLOMBIA, Oct-2013.
dc.relationresolución ANTV, “RESOLUCIÓN ANTV 1132 de 2013.” 2013.
dc.relationM. C. Medina, “Análisis del proceso de transición de la televisión análoga a la televisión digital en Colombia,” 2014.
dc.relation“Cobertura TDT.” 2015.
dc.relationA. N. del Espectro, “#PonteEnOnda El espectro radioeléctrico y los avances tecnológicos,” 2016.
dc.relationAGENCIA NACIONAL DEL ESPECTRO, “RESOLUCIÓN 461 DE AGOSTO 1 DE 2017 -.” 2017.
dc.relation“acuerdo_003_04_junio_2009.pdf.” .
dc.relationL. A. Junta, D. D. E. La, N. D. E. Televisi, and D. T. Tdt, “Acuerdo 004,” 2011.
dc.relationresolución ANTV, “acuerdo 08 de 2010,” vol. 5, no. 220, p. 2014, 1987.
dc.relationComisión Nacional de Televisión., “Acuerdo_002_2012_TDT.pdf.” p. 15, 2012.
dc.relation“Resolucion_442_2017.pdf.” .
dc.relation“Convenio Uso del Espectro RadioeléctricoRadiodifusión Perú-Colombia.” .
dc.relationM. Conti, S. K. Das, C. Bisdikian, M. Kumar, L. M. Ni, A. Passarella, G. Roussos, G. Tröster, G. Tsudik, and F. Zambonelli, “Looking ahead in pervasive computing: Challenges and opportunities in the era of cyber--physical convergence,” Pervasive Mob. Comput., vol. 8, no. 1, pp. 2–21, 2012.
dc.relationR. Poovendran, “Cyber--physical systems: Close encounters between two parallel worlds [point of view],” Proc. IEEE, vol. 98, no. 8, pp. 1363–1366, 2010.
dc.relationK.-J. Park, R. Zheng, and X. Liu, “Cyber-physical systems: Milestones and research challenges.” Elsevier, 2012.
dc.relationI. Lee and K. Lee, “The Internet of Things (IoT): Applications, investments, and challenges for enterprises,” Bus. Horiz., vol. 58, no. 4, pp. 431–440, 2015.
dc.relationS. Forge, “Radio spectrum for the internet of things,” info, vol. 18, no. 1, pp. 67–84, 2016.
dc.relationA. A. Khan, M. H. Rehmani, and A. Rachedi, “When Cognitive Radio meets the Internet of Things?,” 2016 Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2016, pp. 469–474, 2016.
dc.relationS. Hu, H. Guo, C. Jin, Y. Huang, B. Yu, and S. Li, “Frequency-domain oversampling for cognitive CDMA systems: Enabling robust and massive multiple access for internet of things,” IEEE Access, vol. 4, pp. 4583–4589, 2016.
dc.relationM. A. Shah, S. Zhang, and C. Maple, “Cognitive Radio Networks for Internet of Things : Applications , Challenges and Future,” no. September, pp. 13–14, 2013.
dc.relationZ. A. Khan and Y. Faheem, “Cognitive radio sensor networks: Smart communication for smart grids—A case study of Pakistan,” Renew. Sustain. Energy Rev., vol. 40, pp. 463–474, 2014.
dc.relationP. Rawat, K. D. Singh, and J. M. Bonnin, “Cognitive radio for M2M and Internet of Things: A survey,” Comput. Commun., vol. 94, pp. 1–29, 2016.
dc.relationT. A. Sohan, H. H. Haque, A. Hasan, J. Islam, and A. B. M. A. Al Islam, “A Graph Coloring Based Dynamic Channel Assignment Algorithm For Cognitive Radio Vehicular Ad Hoc Networks.”
dc.relationG. P. Joshi, S. Y. Nam, and S. W. Kim, “Cognitive radio wireless sensor networks: applications, challenges and research trends,” Sensors, vol. 13, no. 9, pp. 11196–11228, 2013.
dc.relationT. L. Doumi, “Spectrum considerations for public safety in the United States,” IEEE Commun. Mag., vol. 44, no. 1, pp. 30–37, 2006.
dc.relationS. Ball, A. Ferguson, and T. W. Rondeau, “Consumer applications of cognitive radio defined networks,” 2005 1st IEEE Int. Symp. New Front. Dyn. Spectr. Access Networks, DySPAN 2005, pp. 518–525, 2005.
dc.relationA. Medeisis, O. Holland, and L. De Nardis, “Taxonomy of Cognitive Radio applications,” 2012 IEEE Int. Symp. Dyn. Spectr. Access Networks, pp. 166–170, 2012.
dc.relationA. Anderson, E. W. Frew, and D. Grunwald, “Cognitive radio development for UAS applications,” 2015 Int. Conf. Unmanned Aircr. Syst. ICUAS 2015, pp. 695–703, 2015.
dc.relationZ. Wang and Y. Li, “Main challenges in practical applications of cognitive radio,” Proc. - 2011 4th IEEE Int. Conf. Broadband Netw. Multimed. Technol. IC-BNMT 2011, pp. 478–482, 2011.
dc.relationS. Yanbin, T. Zhongji, and L. Xu, “The Application of the Cognitive Radio in the Aviation Communication Spectrum Management,” Phys. Procedia, vol. 25, pp. 1720–1725, 2012.
dc.relationM. Espinosa Buitrago, M. R. Pérez Cerquera, and D. patricia Reinales Mendoza, “Espectro radioeléctrico para el desarrollo de internet de las cosas.,” .
dc.relationE. Commission, “RADIO SPECTRUM POLICY GROUP A Spectrum Roadmap for IoT Opinion on the Spectrum Aspects of the Internet-of-things ( IoT ) including M2M,” no. November, 2016.
dc.relationY. Ito, “Reglamento de Radiocomunicaciones para una utilización inteligente del espectro radioeléctrico,” Actual. la UIT, no. 5, pp. 11–13, 2015.
dc.relationK. A. Qaraqe, H. Celebi, M. S. Alouini, A. El-Saigh, L. Abuhantash, M. Al-Mulla, O. Al-Mulla, A. Jolo, and A. Ahmed, “Measurement and analysis of wideband spectrum utilization in indoor and outdoor environments,” in International Conference on Communications Technologies (ICCT 2010), 2010.
dc.relationM. López-Ben’\itez, A. Umbert, and F. Casadevall, “Evaluation of spectrum occupancy in Spain for cognitive radio applications,” in Vehicular technology conference, 2009. VTC Spring 2009. IEEE 69th, 2009, pp. 1–5.
dc.relationT. Harrold, R. Cepeda, and M. Beach, “Long-term measurements of spectrum occupancy characteristics,” in New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2011 IEEE Symposium on, 2011, pp. 83–89.
dc.relationS. Yin, D. Chen, Q. Zhang, M. Liu, and S. Li, “Mining spectrum usage data: a large-scale spectrum measurement study,” IEEE Trans. Mob. Comput., vol. 11, no. 6, pp. 1033–1046, 2012.
dc.relationM. H. Islam, C. L. Koh, S. W. Oh, X. Qing, Y. Y. Lai, C. Wang, Y.-C. Liang, B. E. Toh, F. Chin, G. L. Tan, and others, “Spectrum survey in Singapore: Occupancy measurements and analyses,” in Cognitive Radio Oriented Wireless Networks and Communications, 2008. CrownCom 2008. 3rd International Conference on, 2008, pp. 1–7.
dc.relationV. Valenta, R. Maršálek, G. Baudoin, M. Villegas, M. Suarez, and F. Robert, “Survey on spectrum utilization in Europe: Measurements, analyses and observations,” in Cognitive Radio Oriented Wireless Networks & Communications (CROWNCOM), 2010 Proceedings of the Fifth International Conference on, 2010, pp. 1–5.
dc.relationL. F. Pedraza, F. Forero, and I. Paez, “Metropolitan spectrum survey in bogota colombia,” in Advanced Information Networking and Applications Workshops (WAINA), 2013 27th International Conference on, 2013, pp. 548–553.
dc.relationA. Palaios, J. Riihijarvi, and P. Mahonen, “From Paris to London: Comparative analysis of licensed spectrum use in two European metropolises,” in Dynamic Spectrum Access Networks (DYSPAN), 2014 IEEE International Symposium on, 2014, pp. 48–59.
dc.relationR. Akhtyamov, I. L. i Cruz, H. Matevosyan, D. Knoll, U. Pica, M. Lisi, and A. Golkar, “An implementation of Software Defined Radios for federated aerospace networks: Informing satellite implementations using an inter-balloon communications experiment,” Acta Astronaut., vol. 123, pp. 470–478, 2016.
dc.relationR. C. Reinhart, S. K. Johnson, T. J. Kacpura, C. S. Hall, C. R. Smith, and J. Liebetreu, “Open architecture standard for NASA’s software-defined space telecommunications radio systems,” Proc. IEEE, vol. 95, no. 10, pp. 1986–1993, 2007.
dc.relationR. W. Thomas, D. H. Friend, L. A. Dasilva, and A. B. Mackenzie, “Cognitive networks: adaptation and learning to achieve end-to-end performance objectives,” IEEE Commun. Mag., vol. 44, no. 12, pp. 51–57, 2006.
dc.relationD. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A knowledge plane for the internet,” in Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, 2003, pp. 3–10.
dc.relationK. C. Carlos and D. Birru, “Ieee 802.22: an introduction to the first wireless standard based on cognitive radios;’IEEE journal of communications" vol. I, no. I.” April, 2006.
dc.relationJ. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18, 1999.
dc.relationD. Garc’\ia Gómez, J. M. Riera Salis, and P. del Pino, “Implementación y configuración de un receptor de radio definido por software (SDR) para estudios de propagación,” 2012.
dc.relationD. T. Otermat, C. E. Otero, and I. Kostanic, “Analysis of the FM radio spectrum for Internet of Things opportunistic access via Cognitive Radio,” IEEE World Forum Internet Things, WF-IoT 2015 - Proc., pp. 166–171, 2016.
dc.relationX. Huang, J. Wu, S. Member, W. Li, and Z. Zhang, “for Cognitive Radio Enabled Vehicular Ad-Hoc Networks,” vol. 13, no. 1, pp. 59–70, 2016.
dc.relation“Cognitive Radio Wireless Sensor Network...ations, Challenges and Research Trends.pdf.” .
dc.relationJ. Wang, M. Ghosh, and K. Challapali, “Emerging cognitive radio applications: A survey,” IEEE Commun. Mag., vol. 49, no. 3, pp. 74–81, 2011.
dc.relationV. De, “Rec. UIT-R V.573-5 1,” 2007.
dc.relationT. R. Cognitivos, Z. Rurales, E. Blancos, T. V. A. Galv, and A. Fecha, “Radios Cognitivos : Conectividad en Zonas Rurales utilizando Espacios Blancos de TV,” 2016.
dc.relationT. Baykas, J. Wang, M. A. Rahman, H. N. Tran, C. Song, S. Filin, Y. Alemseged, C. Sun, G. P. Villardi, C. S. Sum, Z. Lan, and H. Harada, “Overview of TV white spaces: Current regulations, standards and coexistence between secondary users,” IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, pp. 38–43, 2010.
dc.relationS. W. Oh, Y. Ma, M. Tao, E. Chu, and Y. Peh, “an Overview and Comparison of Tv White Space Regulations Worldwide,” pp. 1–5, 2014.
dc.relationF. Paisana, J. P. Miranda, N. Marchetti, and L. A. Dasilva, “Database-aided sensing for radar bands,” 2014 IEEE Int. Symp. Dyn. Spectr. Access Networks, DYSPAN 2014, pp. 1–6, 2014.
dc.relationA. N. D. E. ANE, “Plataforma de software para el uso de los espacios en blanco en Colombia.” pp. 1–5, 2016.
dc.relation“Facultad de Ingeniería de Telecomunicaciones inicia convenio de cooperación con la Agencia Nacional del Espectro - ANE.” .
dc.relationG. E. Chanch’\i, W. Y. Campo, J. P. Amaya, and J. L. Arciniegas, “Esquema de servicios para Televisión Digital Interactiva, basados en el protocolo REST-JSON,” Cad. Informática, vol. 6, no. 1, pp. 233–240, 2011.
dc.relationV. Chen, S. Das, L. Zhu, J. Malyar, and P. McCann, “Protocol to Access White-Space (PAWS) Databases,” Internet Eng. Task Force (IETF), RFC 7545, pp. 1–90, 2015.
dc.relationI. Pm, “A guide to the project management body of knowledge (PMBOK guide),” 2000.
dc.relationJ. . H. B. . S. M. . A. L. HUIDOBRO, “Revista de la construcción.,” Rev. la Construcción, vol. 8, no. 2, 2009.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleSistema cognitivo de petición de canales disponibles en la banda de frecuencia de 470mhz a 698 mhz para el despliegue de iot


Este ítem pertenece a la siguiente institución