dc.contributor | García Barbosa, Jorge Andrés | |
dc.contributor | https://orcid.org/0000-0002-7020-4688 | |
dc.contributor | https://scholar.google.es/citations?user=km7wEwIAAAAJ&hl=es | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000473600 | |
dc.contributor | Universidad Santo Tomás | |
dc.creator | Cárdenas Páez, Cristhian Libardo | |
dc.date.accessioned | 2022-02-09T15:49:20Z | |
dc.date.available | 2022-02-09T15:49:20Z | |
dc.date.created | 2022-02-09T15:49:20Z | |
dc.date.issued | 2022-02-04 | |
dc.identifier | Cárdenas Páez, C. L. (2022). Diseño de un engranaje hipoide y su fabricación en máquinas CNC multieje tecnica 4+1 ejes. [Trabajo de Pregrado, Universidad Santo Tomás]. Repositorio institucional - Universidad Santo Tomás. | |
dc.identifier | http://hdl.handle.net/11634/43132 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.description.abstract | A hypoid pinion was developed following the design methodology of the face-hobbing process proposed by the ISO 23509 standard, which due to its geometric characteristics such as unequal pressure angles and changes in tooth thickness along the pinion, generates a complex geometry. To obtain said geometry, a vertical machining center was used that has a fourth and fifth axis of movement, establishing that the use of specialized carving machines and tools is not required to obtain these geometries in low production batches. The Design Process Unlike most gear types that have closed-form equations that define their shape, the geometry of hypoid gears can only be calculated by solving equations governed by the manufacturing process, including machine settings. and cutter specifications. After the CAD design, the manufacturing process was planned, selecting standard material and tools for each of the material removal operations using the Nx CAM software, trajectories were verified in roughing and finishing processes of the pinion tooth profile to avoid collisions and damage to the part. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Pregrado Ingeniería Mecánica | |
dc.publisher | Facultad de Ingeniería Mecánica | |
dc.relation | X. Yang, C. Song, C. Zhu, C. Liang, and R. Sun, “Impacts of Misalignments on Mesh Behaviors of Face-Hobbed Hypoid Gear Considering System Deformation,” IEEE Access, vol. 7, pp. 79244–79253, 2019, doi: 10.1109/ACCESS.2019.2923532 | |
dc.relation | F. L. Litvin, W. S. Chaing, C. Kuan, M. Lundy, and W. J. Tsung, “Generation and geometry of hypoid gear-member with face-hobbed teeth of uniform depth,” Int. J. Mach. Tools Manuf., vol. 31, no. 2, pp. 167–181, 1991, doi: 10.1016/0890-6955(91)90002-K | |
dc.relation | X. Wu, J. Han, and J. Wang, “A mathematical model for the generated gear tooth surfaces of spiral bevel and hypoid gears,” Adv. Mater. Res., vol. 314–316, pp. 384–388, 2011, doi: 10.4028/www.scientific.net/AMR.314-316.384 | |
dc.relation | International Organization for Standardization, “ISO 23509: Bevel and hypoid gear geometry.,” vol. 2006, p. 146, 2006 | |
dc.relation | H. Muller and J. Thomas, “Face-off: Face Milling vs. Face Hobbing,” Gear Soluitions, no. September, 2007 | |
dc.relation | D. B. Dooner, M. Vivet, and D. Mundo, “Deproximating Tredgold’s Approximation,” Mech. Mach. Theory, vol. 102, pp. 36–54, 2016, doi: 10.1016/j.mechmachtheory.2016.03.004. | |
dc.relation | J. B. Alonso, “State of the Art on Emotion,” Emotion, vol. 12, no. 2, p. 51, 2006. | |
dc.relation | V. Vullo, Gears Volume 1: Geometric and Kinematic Design, vol. 1. 2020. | |
dc.relation | Piotr Skawinski, Pawel Trzewik, “Bevel gears tooth contact pattern verification. Aircraft Engineering and Aerospace Technology,” 2016, doi: 10.1108/AEAT-10- 2016-0176. | |
dc.relation | O. Mihaylov, “Determining the positions of the elements for the 3-2-1 principle of location in a solidworks add-in,” Vide. Tehnol. Resur. - Environ. Technol. Resour., vol. 3, pp. 160–165, 2019, doi: 10.17770/etr2019vol3.4138. | |
dc.relation | K. R. Wardak, U. Tasch, and P. G. Charalambides, “Optimal fixture design for drilling through deformable plate workpieces part I: Model formulation,” J. Manuf. Syst., vol. 20, no. 1, pp. 23–32, 2001, doi: 10.1016/s0278-6125(01)80017-0. | |
dc.relation | Y. Rong, T. Chu, and S. Palaniappan, “Fixturing Feature Recognition for Computeraided Fixture Design,” IFAC Proc. Vol., vol. 25, no. 28, pp. 97–100, 1992, doi: 10.1016/s1474-6670(17)49472-9. | |
dc.relation | S. P. L. M. Software, “NX Turbomachinery Milling,” 2008. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Acceso cerrado | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | http://purl.org/coar/access_right/c_14cb | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Diseño de un engranaje hipoide y su fabricación en máquinas CNC multieje tecnica 4+1 ejes. | |