dc.creatorSaavedra, Laura M.
dc.creatorRomanelli, Gustavo P.
dc.creatorRozo, Ciro E.
dc.creatorDuchowicz, Pablo R.
dc.date.accessioned2019-08-08T18:07:37Z
dc.date.accessioned2022-09-28T14:14:16Z
dc.date.available2019-08-08T18:07:37Z
dc.date.available2022-09-28T14:14:16Z
dc.date.created2019-08-08T18:07:37Z
dc.date.issued2018-01-01
dc.identifierhttp://hdl.handle.net/11634/18028
dc.identifierhttps://doi.org/10.1016/j.scitotenv.2017.08.119
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3655597
dc.description.abstractThe insecticidal activity of a series of 62 plant derivedmolecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure–Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculatedwith Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave- One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides.
dc.relationBarbosa, J.D.F., Silva, V.B., Alves, P.B., Gumina, G., Santos, R.L.C., Sousa, D.P., Cavalcantia, S.C.H., 2012. Structure–activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag. Sci. 68, 1478–1483.
dc.relationBhattacharjee, A.K., Dheranetra, W., Nichols, D.A., Gupta, R.K., 2005. 3D pharmacophore model for insect repellent activity and discovery of new repellent candidates. QSAR Comb. Sci. 24, 593–602.
dc.relationCarrasco, H., Raimondi, M., Svetaz, L., Di Liberto, M., Rodriguez, M.V., Espinoza, L., Madrid, A., Zacchino, S., 2012. Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules 17, 1002–1024.
dc.relationCeferina, A., Zygadlo, J., Mougabure, G., Biurrun, F., Zerba, E., Picollo, M., 2006. Fumigant and repellent properties of essential oils and component compounds againts permethrin-resistant Pediculus humanus capitis (anoplura: pediculidae) from Argentina. J. Med. Entomol. 43, 889–895.
dc.relationDuchowicz, P.R., Castro, E.A., Fernández, F.M., González, M.P., 2005. A new search algorithm of QSPR/QSAR theories: normal boiling points of some organic molecules. Chem. Phys. Lett. 412, 376–380.
dc.relationEnvironment Protection Agency- EPA; U. E. P. A N,N-Diethyl-m-toluamide (DEET). 1980, 1, 12–32.
dc.relationGillij, Y. G.; Gleiser, R. M.; Zygadlo, J. A., Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99. 2507–2515.
dc.relationHansch, C., Leo, A., 1995. Exploring QSAR. Fundamentals and Applications in Chemistry and Biology. American Chemical Society, Washington, D. C.
dc.relationIbezim, E., Duchowicz, P.R., Ortiz, E.V., Castro, E.A., 2012. QSAR on aryl-piperazine derivatives with activity on malaria. Chemom. Intell. Lab. Syst. 110, 81–88.
dc.relationKatritzky, A.R., Lobanov, V.S., Karelson, M., 1995. QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev. 24, 279–287.
dc.relationMatlab 7.0. Masachussetts, USA: The MathWorks. Inc. URL (http:// www.mathworks.com).
dc.relationNational Pesticide Information Center- NPIC; Oregon State University, 1999n. DDT (Technical Fact Sheet). URL. http://npic.orst.edu/factsheets/ddttech.pdf Consulting date 20 of March 2015.
dc.relationOcampoa, C.B., Salazar-Terrerosa, M.J., Minaa, N.J., McAllisterb, J., Brogdonc, W., 2011. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop. 118, 37–44.
dc.relationPutz, M.V., Dudas, N.A., 2013. Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: application on uracil derivatives' anti-HIV action. Struct. Chem. 24, 1873–1893.
dc.relationRice, P., Coats, J., 1994. Insecticidal properties of monoterpenoid derivatives to the house fly (Diptera: Muscidae) and red flour beetle (Coleoptera: Tenebrionidae). Pestic. Sci. 41, 195–202.
dc.relationSantos, S.R.L., Silva, V.S., Melo, M.A., Barbosa, J.D.F., Santos, R.L.C., Sousa, D.P., Cavalcanti, S.C.H., 2010. Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes and related compounds in Aedes aegypti larvae. Vector- Borne Zoonotic Dis. 10, 1049–1054.
dc.relationTalete srl, d. Dragon (Software for Molecular Descriptor Calculation) Version 6.0–2014. URL. http://www.talete.mi.it.
dc.relationWHO, 2006. Pesticides and their application for the control of vectors and pests of public health importance. 6th ed. World Health Organization, Department of Control of Neglected Tropical Diseases, Pesticides Evaluation Scheme, Geneva URL. http:// whqlibdoc.who.int/hq/2006/WHO_CDS_NTD_WHOPES_GCDPP_2006.1_eng.pdf (Consulting date 5 of February 2017).
dc.relationXiao, Y., Yu, J., 2012. Partitive clustering (K-means family). WIREs Data Mining Knowl Discov. 2, 209–225.
dc.relationZhou, L.; Wang, J.; Wang, K.; Xu, J.; Zhao, J.; Shan, T.; Luo, C., Secondary Metabolites with Antinematodal Activity from Higher Plants. Studies in Natural Products Chemistry. Bioactive Natural Products. Atta-ur-Rahman F.R.S., Eds.; Elsevier Press: Oxford. 2012, p. 67–114.
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia
dc.titleThe quantitative structure–insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos


Este ítem pertenece a la siguiente institución