dc.contributorPineda Rios, Wilmar
dc.creatorAlarcón Granados, Mauricio
dc.date.accessioned2020-01-20T17:45:00Z
dc.date.available2020-01-20T17:45:00Z
dc.date.created2020-01-20T17:45:00Z
dc.identifierAlarcón, M. (2019). Análisis conjunto mediante modelos lineales jerárquicos y modelos lineales jerárquicos bayesianos. Una aproximación desde el análisis multivariado. (trabajo de pregrado) Universidad Santo Tomás. Bogotá, Colombia
dc.identifierhttp://hdl.handle.net/11634/20851
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractIn order to evaluate the market strategy to be followed in the relaunch of a current financial product in the market, the company consulted its current and potential customers through a survey of the ideal financial product. The results were collected, processed and analyzed through Análisis Conjunto or Conjoint Analysis. The first evaluation is carried out through a conjoint analysis for ordered data, traditionally used in market research. Next, and in order to evaluate the results through different methodologies such as linear conjoint analysis, hierarchical linear conjoint analysis and Bayesian hierarchical conjoint analysis, the transformation of RANKING type data to SCORE type data is performed using homogeneity analysis.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Estadística
dc.publisherFacultad de Estadística
dc.relationAndrade, J., 2010. Conjoint analysis a pie. Market Variance. Recuperado de http://marketvariance.com/ blog/2010/01/12/conjoint-analysis-a-pie.
dc.relationBak, A. , Bartlomowicz, T. 2012. Conjoint analysis method and its implementation in conjoint R package. Wroclaw University of Economics.
dc.relationChapman, C. 2015. R for marketing research and analytics. Springer.
dc.relationDe la Cerna Villavicencio, J. F. 2016. Identificación de preferencias académicas universitarias en alumnos de los últimos años de educación secundaria en el colegio particular “Bella Unión” mediante el uso del Análisis Conjunto -Perfil Completo- con el aplicativo estadístico R. Lima, Perú.
dc.relationFactum Mercadotécnico. 2009. Análisis de conjuntos (Conjoint Analysis. Recuperado de www.factummarketing.com/download.php?file=CONJOINT.ppt.
dc.relationFerreira Lopes, S. (2011). Análisis Conjunto. Teoría, campos de aplicación y conceptos inherentes. Estudios y Perspectivas en Turismo, 20 (2), 341-366.
dc.relationLam, K.Y. Koning, A.J. Franses, Ph.H.B.F., 2010. Ranking Models in Conjoint Analysis,.Econometric Institute Research Papers EI 2010-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute..
dc.relationLenk, P. J. , DeSarbo, W. S. , Green, P. E. and Young, M. R. 1996. Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs. Informs.
dc.relationLuce, R. D. , Tukey, R. D. 1994. Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. , Journal of Mathematical Psychology. 1, 1-27.
dc.relationMaydeu-Olivares, A, Bockenholt, U. 2005. Structural Equation Modeling of Paired-Comparison and Ranking Data.Psychological Methods. Vol. 10, No. 3, pp. 285-304.
dc.relationMcCullough, J, Best, R. 1979. Conjoint Measurement: Temporal Stability and Structural Reliability.Journal of Marketing Research. Vol. 16, No. 1 (Feb., 1979), pp. 26-31.
dc.relationOkamoto, Y. 2015. A Two-Step Analysis with Common Quantification of Categorical Data. Japan Women’s University Journal: Faculty of Integrated Arts and Social Sciences, 2015, 26, 99-112.
dc.relationPark, C. 2004. The robustness of hierarchical Bayes conjoint analysis under alternative measurement scales. Journal of Business Research 57, 1092-1097.
dc.relationRamírez, J. M. 2010. Measuring Preferences: from Conjoint Analysis to Integrated Conjoint Experiments. Revista de métodos cuantitativos para la economía y la empresa. 28-43.
dc.relationRavenzwaaij, D. , Cassey, P. , Brown, S. (2018). A simple introduction to Markov Chain Monte-Carlo sampling. Psychonomic Bulletin Review. 25, 143-154.
dc.relationSharma, S. 2017. Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy.Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW.
dc.relationTenenhaus, M. , Young, F. W. 19855. An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika 50(1):91-119.
dc.relationWoltman, H. , Feldstain, A. , MacKay, J. C. , Rocchi, M. (2012). An introduction to hierarchical linear modeling. Tutorials in Quantitative Methods for Psychology . 8 (1), 52-69.
dc.rightshttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.titleAnálisis conjunto mediante modelos lineales jerárquicos y modelos lineales jerárquicos bayesianos. Una aproximación desde el análisis multivariado.


Este ítem pertenece a la siguiente institución