dc.contributor | Cortes Zambrano, Melquisedec | |
dc.contributor | Universidad Santo Tomás | |
dc.creator | Mozo Moreno, William Ricardo | |
dc.date.accessioned | 2021-04-30T14:32:36Z | |
dc.date.available | 2021-04-30T14:32:36Z | |
dc.date.created | 2021-04-30T14:32:36Z | |
dc.date.issued | 2021-04-29 | |
dc.identifier | Mozo Moreno, W. R. (2021). La Economía Circular En La Industria De La Construcción: Alternativa Para El Manejo Y Disposición De Biosólido De Plantas De Tratamiento De Aguas Residuales. Caso De Estudio Ptar El Salitre – Bogotá D.C. Universidad Santo Tomás. | |
dc.identifier | http://hdl.handle.net/11634/33910 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.description.abstract | At present, the integral management of water resources is promoted and one of the fundamental pillars to achieve this objective is the construction and start-up of both industrial and domestic wastewater treatment plants, which is a benefit for the environment and It contributes to the recovery of bodies of water where it is normally made available. However, the final disposal of wastewater treatment by-products is becoming a technical and environmental problem for the purification units or systems that carry out this task.
From a technical point of view, biosolids or sludge become a problem for treatment stations or plants due to the large quantity in which they are produced, the environmental problem into which they can be converted, and the concentrations of heavy metals and leachates existing in these.
The amount of biosolids generated by wastewater purification activities grows day by day, due to the wastewater management policies and decontamination of water bodies proposed in our country, which promote the construction of new treatment stations or the expansion of existing ones.
This research focuses on finding a viable alternative from the technical and environmental points of view, for the disposal of the biosolid in construction materials, using them as raw material for the manufacture of ceramic elements such as bricks.
The Salitre Wastewater Treatment Plant (WWTP) was selected as the study area, which treats a flow of 4.0 m3 / s and generates between 4500 and 5000 tons of biosolids per month. For Bogotá the recovery of the Río Bogotá is essential, understanding this as an improvement for the quality of life of its inhabitants; For this reason, the expansion and optimization of the EL Salitre WWTP is proposed within the recovery plan of the Bogotá River, from 4.0 to 7.0 m3 / s, and the construction and commissioning of an additional WWTP (PTAR CANOAS) with a capacity of up to 14 m3 / s and a generation of approximately 12,360 tons per month. As can be seen, they are considerable quantities (approximately 20,000 tons) and it is necessary to think about generating different alternatives for disposal and recovery.
To fulfill the objective of the research, a work plan based on 4 activities was developed:
1. Chemical, mineralogical and physical characterization of the raw materials for the manufacture of bricks (clay - biosolid ash - glass); 2. Elaboration of the ceramic elements taking into account the results of the characterization of the raw materials and a series of proposed experimental treatments based on factors such as: the percentages of incorporation of biosolid in its different forms (untreated, dry, ash) , and the firing temperature 3. Evaluation of the quality of the elements obtained taking into account the provisions of the Colombian Technical Standard NTC 4205 (masonry units of fired clay, bricks and ceramic blocks), through resistance tests to the compression, water absorption and initial absorption rate 4. Evaluate the concentration of metals present in the bricks by applying the “Toxicity Characteristic Leaching Procedure” (TCLP) leaching test.
From the results obtained in the research, it was possible to establish optimal values for critical variables within the brick manufacturing process, such as: the inclusion percentage of the biosolid ash, the glass inclusion percentage and the drying and firing temperature. . | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Maestría Ingeniería Civil con Énfasis en Hidroambiental | |
dc.publisher | Facultad de Ingeniería Civil | |
dc.relation | Abbas, S., Saleem, M. A., Kazmi, S. M. S., & Munir, M. J. (2017). Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering, 14, 7–14. https://doi.org/10.1016/j.jobe.2017.09.008 | |
dc.relation | ACUEDUCTO AGUA Y ALCANTARILLADO DE BOGOTÁ. (n.d.). Biosólido. | |
dc.relation | Alarcón, J. (n.d.). Química de Materiales Cerámicos-Notas del TEMA 3. | |
dc.relation | Andreola, F., Barbieri, L., Lancellotti, I., Leonelli, C., & Manfredini, T. (2016). Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies. Ceramics International, 42(12), 13333–13338. https://doi.org/10.1016/J.CERAMINT.2016.05.205 | |
dc.relation | Aouba, L., Bories, C., Coutand, M., Perrin, B., & Lemercier, H. (2016). Properties of fired clay bricks with incorporated biomasses: Cases of Olive Stone Flour and Wheat Straw residues. Construction and Building Materials, 102, 7–13. https://doi.org/10.1016/j.conbuildmat.2015.10.040 | |
dc.relation | ASHBY, Michael F y JONES, D. (1998). Engineering Materials 2 (BH Elsevier (Ed.); 3 ed). | |
dc.relation | Benlalla, A., Elmoussaouiti, M., Dahhou, M., & Assafi, M. (2015a). Utilization of water treatment plant sludge in structural ceramics bricks. Applied Clay Science, 118, 171–177. https://doi.org/10.1016/j.clay.2015.09.012 | |
dc.relation | Benlalla, A., Elmoussaouiti, M., Dahhou, M., & Assafi, M. (2015b). Utilization of water treatment plant sludge in structural ceramics bricks. Applied Clay Science, 118, 171–177. https://doi.org/10.1016/J.CLAY.2015.09.012 | |
dc.relation | Blanco Álvarez, F. (n.d.). fblanco/Leccion7.COCCION. http://www6.uniovi.es/usr/fblanco/Leccion7.COCCION.pdf | |
dc.relation | Blanco Álvarez, F. (2007a). Fblanco/Leccion2.MateriasPrimas.Ceramicas. http://www.etsimo.uniovi.es/usr/fblanco/Leccion2.MateriasPrimas.Ceramicas.2007.pdf | |
dc.relation | Blanco Álvarez, F. (2007b). Fblanco/Leccion6.SECADO. http://www.etsimo.uniovi.es/usr/fblanco/Leccion6.SECADO.pdf | |
dc.relation | urton, F. L., & Tchobanoglous, G. (1995). Ingeniería de aguas residuales. tratamiento, vertido y reutilización. (3a ed.). | |
dc.relation | Callister, W. D. (2010). Introducción a la ciencia e ingeniería de los materiales. (Primera ed) | |
dc.relation | CASELLES POMARES, M. J., GÓMEZ ANTÓN, M. R., MOLERO MENESES, M., & SARDÁ HOYO, J. (2010). QUÍMICA APLICADA A LA INGENIERÍA (UNED (Ed.)). | |
dc.relation | Castro Franco, H. E. (1998). Fundamentos para el Conocimiento y Manejo de Suelos Agrícolas: Manual Técnico / . Instituto Universitario Juan de Castellanos | |
dc.relation | Cerdeño del Castillo, F. J., & Agripino Pérez, L. (n.d.). Viabilidad técnica de uso de lodos de Estaciones de Tratamiento de Aguas Potables (ETAP) en la fabricación de materiales cerámicos para la construcción. Conarquitectura. Retrieved July 11, 2020, from http://conarquitectura.com/articulos tecnicos pdf/30.pdf | |
dc.relation | Cheeseman, C. ., Sollars, C. ., & McEntee, S. (2003). Properties, microstructure and leaching of sintered sewage sludge ash. Resources, Conservation and Recycling, 40(1), 13–25. https://doi.org/10.1016/S0921-3449(03)00022-3 | |
dc.relation | Chiang, K.-Y., Chien, K.-L., & Hwang, S.-J. (2008). Study on the characteristics of building bricks produced from reservoir sediment. Journal of Hazardous Materials, 159(2–3), 499—504. https://doi.org/10.1016/j.jhazmat.2008.02.046 | |
dc.relation | Chiang, K.-Y., Chou, P.-H., Hua, C.-R., Chien, K.-L., & Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171(1–3), 76–82. https://doi.org/10.1016/J.JHAZMAT.2009.05.144 | |
dc.relation | Cota, T. G., Reis, E. L., Lima, R. M. F., & Cipriano, R. A. S. (2018). Incorporation of waste from ferromanganese alloy manufacture and soapstone powder in red ceramic production. In Applied Clay Science (Vol. 161, pp. 274–281). Elsevier Ltd. https://doi.org/10.1016/j.clay.2018.04.034 | |
dc.relation | Cultrone, G., Sebastia´n, E. S., Elert, K., Jose´de La Torre, M. J., Cazalla, O., & Rodriguez-Navarro, C. (2004a). Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society, 547–564. https://doi.org/10.1016/S0955-2219(03)00249-8 | |
dc.relation | Cultrone, G., Sebastia´n, E. S., Elert, K., Jose´de La Torre, M. J., Cazalla, O., & Rodriguez-Navarro, C. (2004b). Influence of mineralogy and firing temperature on the porosity of bricks. https://doi.org/10.1016/S0955-2219(03)00249-8 | |
dc.relation | Cultrone, G., & Sebastián, E. (2008). Fly ash addition in clayey materials to improve the quality of solid bricks. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2008.07.001 | |
dc.relation | Das, B. M. (1999). Fundamentos de ingeniería geotécnica. (THOMSON (Ed.)). http://crai-ustadigital.usantotomas.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat06937a&AN=tom.000028184&lang=es&site=eds-live | |
dc.relation | Demir, I. (2008). Effect of organic residues addition on the technological properties of clay bricks. Waste Management, 28(3), 622–627. https://doi.org/10.1016/j.wasman.2007.03.019 | |
dc.relation | Deng, F. L., & Chih, H. W. (2005). Use of sewage sludge ash as brick material. Applied Clay Science, 6. | |
dc.relation | Elías, X. (2001). Optimización de procesos cerámicos industriales. 2, 35. | |
dc.relation | Eliche-Quesada, D., & Leite-Costa, J. (2016). Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Waste Management, 48. https://doi.org/10.1016/j.wasman.2015.11.042 | |
dc.relation | Eliche-Quesada, D., Martínez-García, C., Martínez-Cartas, M. L., Cotes-Palomino, M. T., Pérez-Villarejo, L., Cruz-Pérez, N., & Corpas-Iglesias, F. A. (2011). The use of different forms of waste in the manufacture of ceramic bricks. Applied Clay Science, 52(3), 270–276. https://doi.org/10.1016/J.CLAY.2011.03.003 | |
dc.relation | Empresa de Acueducto de Bogotá. (n.d.). Retrieved June 14, 2020, from https://www.acueducto.com.co/wps/portal/EAB/Home/Ambiental/Inicio/!ut/p/z1/tVNdT8IwFP0tPuwRevfFmG9DDEgQDSqyvpi2lDHd2tGVTf31VjAmJHzEIE2TftxzTk9u70UYTREWpEoTolMpSGbOMW69hGE3sh1wRr1-6EI0GTs30eMVwL2HJggjXLB0hmJmUxawNnju3AGfkdD2AkoZpbbfZgGxv5FM6EIvUMwJoVXLgpKw | |
dc.relation | Espitia, C. J., Quintero, J., Rodriguez, A., Bernal, F. I., Freddy, R., Mojica, J., Cabezas, H., Hernández, M., Pachón, M., Múnera, M. H., Ramirez, J., & Duitama, L. M. (2003). CATÁLOGO DE PROPIEDADES FÍSICAS, QUÍMICAS Y MINERALÓGICAS DE LAS ARCILLAS PARA CERÁMICA ROJA EN LOS CENTROS URBANOS DE MEDELLÍN, IBAGUÉ Y SABANA DE BOGOTÁ. | |
dc.relation | Facultad de ciencias Químicas Universidad Autónoma de Chihuahua. (n.d.). MANEJO DE SÓLIDOS RESIDUALES O BIOSOLIDOS. Retrieved June 9, 2020, from http://www.oocities.org/edrochac/residuales/biosolidos9.pdf | |
dc.relation | Fernández, J. . (2003). El vidrio (C. S. de I. Científicas (Ed.); Tercera ed). | |
dc.relation | Galán, E., & Aparicio, P. (n.d.). Materias primas para la industria cerámica INTRODUCCIÓN. | |
dc.relation | García-Pérez, O. D., Tapia-Salazar, M., Nieto-López, M. G., Villarreal-Cavazos, D., Cruz-Suárez, L. E., & Ricque-Marie, D. (2013). EFECTIVIDAD DE PRODUCTOS A BASE DE ALUMINOSILICATOS EN LA DETOXIFICACIÓN DE DIETAS CONTAMINADAS CON AFLATOXINAS PARA JUVENILES DE CAMARÓN BLANCO DEL PACÍFICO, LITOPENAEUS VANNAMEI. In Ciencias marinas (Vol. 39). scielomx. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802013000100001&nrm=iso | |
dc.relation | Gippini Pérez, E. &, & Instituto Eduardo Torroja de la Construcción y del Cemento. (1979). Pastas cerámicas. In TA - TT -. Instituto Eduardo Torroja de la Construcción y el Cemento. | |
dc.relation | ICONTEC, I. C. de N. T. y C. (2015). NTC 296 - INGENIERÍA CIVIL Y ARQUITECTURA. DIMENSIONES MODULARES DE UNIDADES DE MAMPOSTERÍA DE ARCILLA COCIDA. LADRILLOS Y BLOQUES CERÁMICOS (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | INGEOMINAS, M. de minas y energía. I. colombiano de geología y minería. (2003). Catálogo de propiedades físicas y químicas para cerámica roja en los centros urbanos de Medellín, Ibagué y sabana de Bogotá. | |
dc.relation | INSTITUTO COLOMBIANO DE NORMALIZACIÓN Y CERTIFICACIÓN. (1998). Gestión ambiental. Calidad de agua. Parte 13: Guía para el muestreo de lodos de aguas residuales y plantas de tratamiento de aguas. NTC - ISO 5667-13. | |
dc.relation | Instituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. (2011). Norma Técnica Colombiana [NTC] 5167. Icontec Internacional, 571, 1–51. www.icontec.org | |
dc.relation | Instituto Nacional de Vías (Invías). (n.d.). DETERMINACION DEL CONTENIDO ORGANICO EN SUELOS MEDIANTE PERDIDA POR IGNICION I.N.V. E - 121 1. | |
dc.relation | Juel, M. A. I., Mizan, A., & Ahmed, T. (2017). Sustainable use of tannery sludge in brick manufacturing in Bangladesh. Waste Management, 60, 259–269. https://doi.org/10.1016/j.wasman.2016.12.041 | |
dc.relation | Kazmi, S. M. S., Munir, M. J., Patnaikuni, I., Wu, Y. F., & Fawad, U. (2018). Thermal performance enhancement of eco-friendly bricks incorporating agro-wastes. Energy and Buildings, 158, 1117–1129. https://doi.org/10.1016/j.enbuild.2017.10.056 | |
dc.relation | Lagua, H., Estalin, D., Calderón, P., & Andrés, R. (2013). Escuela politécnica nacional facultad de ingeniería mecánica obtención de adoquines fabricados con vidrio reciclado como agregado proyecto previo a la obtención del titulo de ingeniero mecánico. | |
dc.relation | Lin, D.-F., & Weng, C.-H. (2001). Use of Sewage Sludge Ash as Brick Material. Journal of Environmental Engineering, 127(10), 922–927. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:10(922) | |
dc.relation | Loryuenyong, V., Panyachai, T., Kaewsimork, K., & Siritai, C. (2009). Effects of recycled glass substitution on the physical and mechanical properties of clay bricks. Waste Management, 29(10), 2717–2721. https://doi.org/10.1016/J.WASMAN.2009.05.015 | |
dc.relation | Lozano, M. A. G., & Peña, P. P. (2014). Uso de vidrio de desecho en la fabricación de ladrillos de arcilla / Use of waste glass in the manufacture of clay bricks. CIBA Revista Iberoamericana de Las Ciencias Biológicas y Agropecuarias, 1(2), 43–56. http://www.ciba.org.mx/index.php/CIBA/article/view/17 | |
dc.relation | Mačiulaitis, R., Malaiškiene, J., & Kičaite, A. (2008). The regulation of physical and mechanical parameters of ceramic bricks depending on the drying regime. Journal of Civil Engineering and Management, 14(4), 263–268. https://doi.org/10.3846/1392-3730.2008.14.25 | |
dc.relation | Mahamud, M., Gutiérrez, A., & Sastre, H. (1996). Biosolidos generados en la depuraión del agua. In Ingeniería del Agua (Vol. 3, Issue 3). | |
dc.relation | Mao, L., Wu, Y., Zhang, W., & Huang, Q. (2019). The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing. Journal of Environmental Management, 231, 780–787. https://doi.org/10.1016/j.jenvman.2018.10.120 | |
dc.relation | Martínez Ana, L. T. (1995). EL MUNDO MÁGICO DEL VIDRIO (Fondo de Cultura Económica (Ed.); 1st ed.). | |
dc.relation | MARTINEZ RAMIREZ, L. (n.d.). EL RECICLAJE DEL VIDRIO. https://es.calameo.com/read/00123776784deee827ae4 | |
dc.relation | DECRETO 1287 DE 2014 por el cual se establecen criterios para el uso de los biosólidos generados en plantas de tratamiento de aguas residuales municipales., 18 (2014). | |
dc.relation | Morales Güeto, J. (2012). Tecnología de los materiales cerámicos. http://crai-ustadigital.usantotomas.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselb&AN=edselb.3196548&lang=es&site=eds-live | |
dc.relation | Mozo, W., Gómez, A., Camargo, G., & Co, W. M. E. (2015). Efecto de la adición de biosólido (seco) a una pasta cerámica sobre la resistencia mecánica de ladrillos. Revista Ingenierías Universidad de Medellín, 14(27), 61–78. | |
dc.relation | Navarro, C., Corvalán, D., Quiroz, E., & Contreras, S. (2008). Evaluación de la potencialidad del uso de biosólidos originados en las plantas de tratamiento de aguas servidas en la fabricación de ladrillos. Revista Residuos, 108, 46–53. | |
dc.relation | NTC 4205. (2000). NTC 4205 Unidades de mamposteria de arcilla cocida. Ladrillos y bloques ceramicos. Norma Técnica Colombiana, 571, 14. | |
dc.relation | Organización de las naciones Unidas. (n.d.). Agua y saneamiento – Desarrollo Sostenible. Retrieved June 9, 2020, from https://www.un.org/sustainabledevelopment/es/water-and-sanitation/ | |
dc.relation | Orozco Barrenetxea, C., Pérez Serrano, A., González Delgado, M. N., & Rodríguez Vidal, F. J. (2003). Contaminación ambiental : una visión desde la química. http://crai-ustadigital.usantotomas.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat06937a&AN=tom.000102893&lang=es&site=eds-live | |
dc.relation | Phonphuak, N., Kanyakam, S., & Chindaprasirt, P. (2016). Utilization of waste glass to enhance physical–mechanical properties of fired clay brick. Journal of Cleaner Production, 112, 3057–3062. https://doi.org/10.1016/J.JCLEPRO.2015.10.084 | |
dc.relation | PTAR SALITRE. (2011). TRATAMIENTO DE AGUAS Y LODOS. | |
dc.relation | Riaz, M. H., Khitab, A., & Ahmed, S. (2019). Evaluation of sustainable clay bricks incorporating Brick Kiln Dust. https://doi.org/10.1016/j.jobe.2019.02.017 | |
dc.relation | Rincón, J. M. A. (n.d.). Materias Primas para la Industria del Vidrio (p. 26). | |
dc.relation | Romero, R. J. (2000). Tratamiento de Aguas Residuales. Teoría y Principios de Diseño. Escuela Colombiana de Ingeniería. | |
dc.relation | S.c.a.r.l., S. I. (2004). Tecnología cerámica aplicada / SACMI (A. E. de T. Cerámicos (Ed.); Castellón). | |
dc.relation | Salvato, J. A., Nemerow, N. L., & Agardy, F. J. (2003). ENVIRONMENTAL ENGINEERING FIFTH EDITION. www.wiley.com. | |
dc.relation | Schaffer, J. P. (2000). Ciencia y diseño de ingeniería de los materiales. http://crai-ustadigital.usantotomas.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat06937a&AN=tom.000021455&lang=es&site=eds-live | |
dc.relation | Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., & Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production, 95, 45–54. https://doi.org/10.1016/j.jclepro.2015.02.051 | |
dc.relation | Sutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E., & Ozbakkaloglu, T. (2019a). Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. https://doi.org/10.1016/j.jclepro.2019.06.017 | |
dc.relation | Sutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E., & Ozbakkaloglu, T. (2019b). Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production, 233, 753–764. https://doi.org/10.1016/j.jclepro.2019.06.017 | |
dc.relation | Teixeira, S. R., Santos, G. T. A., Souza, A. E., Alessio, P., Souza, S. A., & Souza, N. R. (2011). The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Applied Clay Science, 53(4), 561–565. https://doi.org/10.1016/J.CLAY.2011.05.004 | |
dc.relation | Umaña P., Francy Yolima y Romero R., J. A. (2001). Fabricación de ladrillos a partir de lodos secos. Revista Colombiana de Ingeniería, no. 43. Vidrio reciclado: un proceso fascinante y de usos múltiples. (n.d.). Retrieved June 9, 2020, from https://www.segtecvidrio.com/vidrio-reciclado-proceso-usos/ | |
dc.relation | Vladimir, R., Sarmiento, A., & Avecillas, F. R. (2009). Diseño de un horno-túnel para planta procesadora de arcilla “Bella Azhuquita.” 38–39. | |
dc.relation | Weng, C.-H., Lin, D.-F., & Chiang, P.-C. (2003). Utilization of sludge as brick materials. Advances in Environmental Research, 7(3), 679–685. https://doi.org/https://doi.org/10.1016/S1093-0191(02)00037-0 | |
dc.relation | Acosta Castellanos, P. M., Queiruga-Dios, A., Hernández Encinas, A., & Acosta, L. C. (2020). Environmental Education in Environmental Engineering: Analysis of the Situation in Colombia and Latin America. Sustainability, 12(18), 7239. doi:10.3390/su12187239 | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | La economía circular en la industria de la construcción: alternativa para el manejo y disposición de biosólido de plantas de tratamiento de aguas residuales. Caso de estudio PTAR el Salitre – Bogotá D.C. | |