dc.contributorLobo, Lumar
dc.contributorUniversidad Santo Tomás
dc.creatorLandinez Jaimes, Tatiana Paola
dc.creatorPineda Castañeda, Karen Lorena
dc.creatorTrujillo Ramírez, Paola Andrea
dc.date.accessioned2022-01-19T17:06:44Z
dc.date.available2022-01-19T17:06:44Z
dc.date.created2022-01-19T17:06:44Z
dc.date.issued2022-01-19
dc.identifierLandinez Jaimes, T. P., Pineda Castañeda, K. L. y Trujillo Ramírez, P. A. (2022). Resistencia a la fractura ante fuerzas compresivas en láminas de G-CAM Grafeno y Vita Enamic. Comparación in vitro. [Tesis de Posgrado]. Universidad Santo Tomás. Bucaramanga, Colombia.
dc.identifierhttp://hdl.handle.net/11634/42436
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe loss of dental structure is due to various factors such as trauma, caries, iatrogenesis generating wear of the tooth structure, being solved with different restorative procedures, a fundamental reason why suitable materials are sought to restore aesthetics and mainly function. Objective To evaluate the compressive resistance to fracture in G-CAM Graphene and Vita Enamic sheets. Materials and methods An in vitro test was carried out, where there was more than one comparison group, characterized by the intervention in group 0 and in group 1 a total of 40 slides were used, 20 for group 0: G-CAM Graphene and 20 for group 1: Vita Enamic. Variables such as: material, resistance, time, and fracture were evaluated. The data were entered in the Excel ® software and analyzed in Stata 14 ® with a descriptive analysis of the variables, through proportions, frequency measures, central tendency, and dispersion, finally the distribution of the data was evaluated using the Shapiro Wilk W test. Results They showed a global mean of the two compared groups of 1.26 [± 0.54] Nw (7.53 [± 3.25] MPa), with a mean global time of occurrence of the fracture 1.01 [ ± 0.49] in Minutes (61.0 [± 29.9] Sec). For G-CAM Graphene the maximum resistance to fracture was 1.67 [± 0.41] Nw (9.95 [± 2.46] MPa), with an occurrence time of 1.2 [± 0, 53] in Minutes (77.58 [± 32.37] Sec). For the Vita Enamic, the value recorded in maximum resistance to fracture was 0.85 [± 0.30] Nw (5.11 [± 1.81] MPa), with an occurrence time of 0.73 [± 0, 24] in Minutes (44.20 [± 14.47] Sec). Conclusions The compressive resistance to fracture between the G-CAM Graphene and Vita Enamic sheets showed statistically significant differences, with G-CAM Graphene being superior.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherEspecialización Rehabilitación Oral
dc.publisherFacultad de Odontología
dc.relation(1) Lynch CD, Opdam NJ, Hickel R, Brunton PA, Gurgan S, Kakaboura A, Shearer AC, Vanherle G, Wilson NH. Guidance on posterior resin composites: Academy of Operative Dentistry - European Section. Journal Of Dentistry 2014;42(4):377-83. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24462699/
dc.relation(2) Wilson N, Lynch C. The teaching of posterior resin composites: Planning for the future based on 25 years of research. Journal Of Dentistry. 2014;42(5):503-16. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24582692/
dc.relation(3) Ruiz Osorio AE, Rondón Lampe LC. Propiedades estéticas en rehabilitaciones protésicas con disilicato de litio. Bárbula: Universidad de Carabobo; 2013. Disponible en: http://mriuc.bc.uc.edu.ve/handle/123456789/2889
dc.relation(4) Martínez Rus F, Pradíes Ramiro G, Suárez García MJ, Rivera Gómez B, Cerámicas dentales: clasificación y criterios de selección. RCOE. 2007;12(4):253-263. Disponible en: https://bibliografia.co/normas-vancouver/bibliografia-vancouver/
dc.relation(5) Caparroso Pérez C, Duque Vargas JA. Cerámicas y sistemas para restauraciones CAD_CAM: una revisión. Rev Fac Odontol Univ Antioq. 2010;22(1):88-108. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-246X2010000200011
dc.relation(6) VITA. VITA-ENAMIC. Disponible en: https://www.vita-zahnfabrik.com/es/VITA-ENAMIC [Internet]. VITA
dc.relation(7) Macchi L. Materiales dentales. 4a ed. Editorial Médica Panamericana; 2007
dc.relationNoort RV. Introduction to dental materials. 4a ed. Mosby Ltd. 2013;32-34
dc.relation(9) Roulet JF. Benefits and disadvantages of tooth-coloured alternatives to amalgam. J. Dent. 1997;25(6):459-473. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9604577/
dc.relation(10) Di Carlo S, Brauner E, Di Carlo F, Visca A, Piccoli L, De Angelis F. Graphene Applications in Dentistry. Journal of International Dental and Medical Research 2019;12(2):748-754. Disponible en: https://www.proquest.com/docview/2284458807?pq-origsite=gscholar&fromopenview=true.
dc.relation(11) Graphenano Dental. Catálogo. info@graphenano.com Adental.
dc.relation(12) Xie H, Cao T, Rodríguez-Lozano FJ, Luong-Van EK, Rosa V. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Dental Materials 2017;33(7):765-774. Disponible en: https://www.sciencedirect.com/science/article/pii/S0109564116305504
dc.relation(13) Anusavice K.J. Phillips. Ciencia de los Materiales Dentales. 11a ed. Elsevier. 2004.
dc.relation(14) Quintana del Solar M, Castilla Camacho M, Matta Morales C. Resistencia a la fractura frente a carga estática transversal en piezas dentarias restauradas con espigo-muñón colado, postes de fibra de carbono y de aleación de titanio. Revista Estomatológica Herediana. 2005;15(1):24-29. Disponible en: https://www.redalyc.org/articulo.oa?id=421539343005
dc.relation(15) Sánchez R, Roly W. Resistencia a la fractura de piezas dentarias restauradas con espigos prefabricados sometidos a fuerzas verticales in vitro. Universidad Nacional Mayor de San Marcos; 2003. Disponible en: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/2830
dc.relation(16) Curiqueo A, Salamanca C, Borie E, Navarro P, Fuentes R. Evaluación de la fuerza masticatoria máxima funcional en adultos jóvenes chilenos. Int. J. Odontostomat. 2015;9(3):443-447. Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-381X2015000300014
dc.relation(17) Magne P, Schlichting LH, Pires Maia H, Baratieri LN. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. Journal of Prosthetic Dentistry 2010;104(3):149-157. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20813228/
dc.relation(18) Sasse M, Krummel A, Klosa K, Kern M. Influence of restoration thickness and dental bonding surface on the fracture resistance of full-coverage occlusal veneers made from lithium disilicate ceramic. Dental Materials 2015;31(8):907-915.
dc.relation(19) Pérez P, Benítez D, Vergel J. Efecto del espesor de dos materiales cerámicos en la resistencia a la fractura para la fabricación de carillas oclusales. Universidad Pontificia Javeriana. 2019. Disponible en: https://repository.javeriana.edu.co/handle/10554/43146
dc.relation(20) Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneres. J Prosthodont Res. 2014;58(2):10714
dc.relation(21) Mantri SS, Bhasin A. CAD/CAM in Dental Restorations: An Overview. Annals and Essences of Dentistry 2010;3(3):123-128. Disponible en: https://www.researchgate.net/publication/228931572_CadCam_In_Dental_Restorations_An_Overview
dc.relation(22) Magne P, Knezevic A. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars. Quintessence Int 2009;40(2):125-133.
dc.relation(23) Li RW, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res 2014;58(4):208-216.
dc.relation(24) Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015;28(3):227-235.
dc.relation(25) Lim K, Yap AU, Agarwalla SV, Tan KB, Rosa V. Reliability, failure probability, and strength of resin-based materials for CAD/CAM restorations. J Appl Oral Sci 2016;24(5):447-452
dc.relation(26) He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater 2011;27(6):527-534.
dc.relation(27) Swain MV, Coldea A, Bilkhair A, Guess PC. Interpenetrating network ceramic-resin composite dental restorative materials. Dent Mater 2016;32(1):34-42.
dc.relation(28) Azevedo L, Antonaya-Martin JL, Molinero-Mourelle P, del Río-Highsmith J. Improving PMMA resin using graphene oxide for a definitive prosthodontic rehabilitation - A clinical report. J Clin Exp Dent 2019;11(7):e670-e674. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31516667/
dc.relation(29) Consejo General de Protésicos Dentales de España. Grafeno un material del futuro en prótesis dentales. Editorial MIC. 2019;(204).
dc.relation(30) Catálogo, Graphenano Dental, G_CAM Grapheno, info@graphenanodental.com
dc.relation(31) Instituto Valenciano de microbiología. Prueba de irritación intracutánea aguda con el producto, Disco biopolímero nano reforzado con grafeno G-CAM, 2019.
dc.relation(32) Instituto Valenciano de microbiología, Prueba de detección de pirógenos en dispositivos médicos con el producto Disco biopolímero nano reforzado con grafeno G-CAM. (European Pharmacopoeia, apartado 2.6.8).
dc.relation(33) Salesa B, Martí M, Frígols B, Serrano-Aroca Á. Carbon Nanofibers in Pure Form and in Calcium Alginate Composites Films: New Cost-Effective Antibacterial Biomaterials against the Life-Threatening Multidrug-Resistant Staphylococcus epidermidis. Polymers (Basel) 2019;11(3): 453. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473926/
dc.relation(34) Grimaneza Molina C, García Merino IR, Aldas Ramírez JE, Falconí Borja G, Armas Vega AC. Evaluation of microleakage in composite restorations after several aging periods. Rev Fac Odontol Univ Antioq 2015;27(1):76-85. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-246X2015000200076
dc.relation(35) Australasian Dental Practice. Vita hybrid ceramic provides a new definition of strength and aesthetics. Spectrum 2013:24. Disponible en: https://www.dentalpractice.com.au/news/vita-hybrid-ceramic-provides-a-new-definition-of-strength-and-aesthetics/b0ca6a1f-dc98-34c9-6c8f-50c488946f12
dc.relation(36) Ramos N de C, Campos TM, Paz IS, Machado JP, Bottino MA, Cesar PF, Melo RM. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016;32(7):870-8. Disponible en: doi:10.1016/j.dental.2016.03.018
dc.relation(37) VITA. Zahnfabrik H. Rauter GmbH & Co.KG Spitalgasse 3 · D-79713 Bad Säckingen Germany www.vita-zahnfabrik.com · info@vita-zahnfabrik.com
dc.relation(38) VITA. Hybrid ceramic provides a new definition of strength and aesthetics, Australasian Dental Practice January/February 2013
dc.relation(39) Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B. Mechanical properties and internal fit of 4 CAD/CAM block materials. J Prosthet Dent. 2018;119(3):384-389. Disponible en: doi:10.1016/j.prosdent.2017.03.001
dc.relation(40) Sorrentino R, Triulzio C, Tricarico MG, Bonadeo G, Gherlone EF, Ferrari M. In vitro analysis of the fracture resistance of CAD/CAM monolithic zirconia molar crowns with different occlusal thickness. J Mech Behav Biomed Mater 2016;61:328-333. Disponile en: doi:10.1016/j.jmbbm.2016.04.014
dc.relation(41) Egberta JS, Johnsonb AC, Tantbirojnc D, Versluis D. Fracture strength of ultrathin occlusal veneer restorations made from CAD/CAM composite or hybrid ceramic materials. Oral Science International 2015;12(2):53-58. Disponible en: https://www.sciencedirect.com/science/article/pii/S1348864315000178
dc.relation(42) Zheng Z, He Y, Ruan W, Ling Z, Zheng C, Gai Y, Yan W. Biomechanical behavior of endocrown restorations with different CAD/CAM materials: A 3D finite element and in vitro analysis. J Prosthet Dent. 2021;125(6):890-899. Disponible en: doi:10.1016/j.prosdent.2020.03.009
dc.relation(43) Gorrón Quintero MA, Mesa Bogotá C, Palacio Ceballos JG, Torres Durán E. Comparación de la resistencia a la fractura de tres materiales CAD/CAM para incrustaciones: VITA ENAMIC®, CERASMART™ GC E IPS E.MAX® CAD. Estudio In-Vitro. Bogotá: Fundación Universitaria CIEO 2018
dc.relation(44) Mohammed Saleh AR, Al-Ani M, ALRawi T, Al-Edressi G. An in-vitro comparison of fracture resistance of three CAD/CAM Ceramic materials for fabricating Veneer. The Saudi Dental Journal 2020. Disponible en: https://doi.org/10.1016/j.sdentj.2020.03.013.
dc.relation(45) Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B. Mechanical properties and internal fit of 4 CAD/CAM block materials. J Prosthet Dent. 2018;119(3):384-389. Disponible en: doi:10.1016/j.prosdent.2017.03.001
dc.relation(46) Leung BT, Tsoi JK, Matinlinna JP, Pow EH. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. J Prosthet Dent. 2015;114(3):440-6. Disponible en: doi:10.1016/j.prosdent.2015.02.024
dc.relation(47) Mora K, Boquete A, Martinez J. La nanotecnología del grafeno aplicada a la odontología, nuevos materiales bioinspirados en la naturaleza. El dentista moderno 2020.
dc.relation(48) Instituto de Biomecánica de Valencia. Estudio del material G-Cam, biopolímero nanoreforzado con grafeno. 2020. Código 200005 – PV20/023.
dc.rightshttp://creativecommons.org/licenses/by-sa/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-CompartirIgual 2.5 Colombia
dc.rightsAtribución 2.5 Colombia
dc.rightsAtribución-CompartirIgual 2.5 Colombia
dc.titleResistencia a la fractura ante fuerzas compresivas en láminas de G-CAM Grafeno y Vita Enamic. Comparación in vitro


Este ítem pertenece a la siguiente institución