dc.contributorRozo Correa, Ciro Eduardo
dc.creatorJurado Herrera, Mario Andrés
dc.date.accessioned2022-03-18T20:26:32Z
dc.date.available2022-03-18T20:26:32Z
dc.date.created2022-03-18T20:26:32Z
dc.date.issued2022-03-09
dc.identifierJurado, M. (2022). Estudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans.[Tesis de pregrado]. Universidad Santo Tomás. Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/43700
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractIn the present work, the non-covalent interactions between the terpenes citronellal, geraniol and thymol against the enzyme glucosyltransferase (GTFS) of an oral pathogen known as streptococcus mutans, one of those responsible for dental caries. The main function of the GTFS enzyme is to synthesize glucan from sucrose, triggering the demineralization of the teeth, which leads to the colonization of caries. For this reason, this enzyme is of great interest for the control of dental caries. To evaluate the interactions, computational techniques such as molecular maintenance and molecular dynamics were modified. In order to select the best activation program, three programs known as Autodock, Vina and Smina were evaluated, where it was found that the Autodock program will reproduce the interactions of the original ligand. In addition, this same program will reproduce the interactions of another ligand that was used in a practical theoretical study. After selecting the program, the optimization of the terpenes was carried out and the protocol was executed with each structure. The first three poses of the result of each of them were selected and it was found that these poses presented mostly the interactions reported in the literature. With the first three poses of each ligand, molecular dynamics was performed for ten nanoseconds where it was found that, by incorporating the terpenes into the protein, it would acquire stability.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Química Ambiental
dc.publisherFacultad de Química Ambiental
dc.relationAceves, H. (2018). Dinámica molecular de la permeabilidad de nanotubos de carbono en una Bicapa Lipídica. In CONACYT. Centro de Investigación en Materiales Avanzados.
dc.relationAguirre Valderrama, A. (2009). Estudio Mecanocuántico, Docking y dinámica molecular de tioazúcares como inhibidores de la proteína fucosidasa: algoritmo para el análisis conformacional y programa para el cálculo de constantes de acoplamiento vecinales (CAL3JHH). Universidad de Granada.
dc.relationAl-asmari, A. K., Athar, T., & Al-faraidy, A. A. (2017). Chemical composition of essential oil of thymus vulgaris collected from Saudi Arabian market. Asian Pacific Journal of Tropical Biomedicine, 7(2), 147–150.
dc.relationAmaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble Docking in Drug Discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038
dc.relationBotan, A., Favela-Rosales, F., Fuchs, P. F. J., Javanainen, M., Kanduč, M., Kulig, W., Lamberg, A., Loison, C., Lyubartsev, A., Miettinen, M. S., Monticelli, L., Määttä, J., Ollila, O. H. S., Retegan, M., Róg, T., Santuz, H., & Tynkkynen, J. (2015). Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. Journal of Physical Chemistry B, 119(49), 15075–15088. https://doi.org/10.1021/acs.jpcb.5b04878
dc.relationBueren-Calabuig, J. (2014). Dinámica Molecular (1st ed., Vol. 8, Issue 3, pp. 1–17). CreateSpace.
dc.relationCaceres, M., Hidalgo, W., Stashenko, E., Torres, R., & Ortiz, C. (2020). Essential Oils of Aromatic Plants with Antibacterial , Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics, 9(147), 1–15. https://doi.org/10.3390 / antibióticos9040147
dc.relationCarvalho, L., Furletti, V. F., Meyre, S., Bersan, F., Guilherme, M., Ana, L., Tasca, G., Carvalho, E. De, Sartoratto, A., Vera, L., Rehder, G., Mara, G., Cristina, M., Duarte, T., Ikegaki, M., Alencar, S. M. De, & Rosalen, P. L. (2012). Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects. Evidence Based Complementary and Alternative Medicine, 1–12. https://doi.org/10.1155/2012/751435
dc.relationChen, Y. C. (2015). Beware of docking! Trends in Pharmacological Sciences, 36(2), 78–95. https://doi.org/10.1016/j.tips.2014.12.001
dc.relationFejerskov, O., N. B. (2004). Dental Caries: The Disease and its Clinical Management. In Blackwell Munksgaard (2nd ed., Vol. 8, Issue 3). https://doi.org/10.1111/j.1600-0579.2004.00341.x
dc.relationFilgueira, W., & Jr, A. (2019). Docking Screens for Drug Discovery (W. Filgueira (ed.); 1st ed.).
dc.relationForesman, J., & Frisch, A. (2009). Exploring chemistry with electronic structure methods. In Gaussian Inc, Pittsburgh, PA (2nd ed., Vol. 10, Issue 13, pp. 4161–4163). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Exploring+Chemistry+With+Electronic+Structure+Methods#1%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Exploring+chemistry+with+electronic+structure+methods,+1996#1
dc.relationFreires, I. A., Denny, C., Benso, B., Alencar, S. M. De, & Rosalen, P. L. (2015). Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules, 20, 7329–7358. https://doi.org/10.3390/molecules20047329
dc.relationGuandalini Cunha, B., Duque, C., Sampaio Caiaffa, K., Massunari, L., Araguê Catanoze, I., dos Santos, D. M., de Oliveira, S. H. P., & Guiotti, A. M. (2020). Cytotoxicity and antimicrobial effects of citronella oil (Cymbopogon nardus) and commercial mouthwashes on S. aureus and C. albicans biofilms in prosthetic materials. Archives of Oral Biology, 109(September 2019). https://doi.org/10.1016/j.archoralbio.2019.104577
dc.relationGupta, M., Sharma, R., & Kumar, A. (2018). Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry, 76(June), 210–217. https://doi.org/10.1016/j.compbiolchem.2018.06.005
dc.relationHairul Islam, M. I., Arokiyaraj, S., Kuralarasan, M., Senthil Kumar, V., Harikrishnan, P., Saravanan, S., Ashok, G., Chellappandian, M., Bharanidharan, R., Muralidaran, S., & Thirugnanasambantham, K. (2020). Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent Cariogenesis. Microbial Pathogenesis, 143(February), 104129. https://doi.org/10.1016/j.micpath.2020.104129
dc.relationHamada, S., & Slade, H. D. (1980). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological Reviews, 44(2), 331–384. https://doi.org/10.1128/mmbr.44.2.331-384.1980
dc.relationHanwell, M. D. Curtis, D. E Lonie, D. C. Vandermeersch, T., Zurek, E. y Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 1–17. https://doi.org/10.1016/j.aim.2014.05.019
dc.relationIto, K., Ito, S., Shimamura, T., Weyand, S., Kawarasaki, Y., Misaka, T., Abe, K., Kobayashi, T., Cameron, A. D., & Iwata, S. (2011). Crystal Structure of Glucansucrase from the Dental Caries Pathogen Streptococcus mutans. Journal of Molecular Biology, 408(2), 177–186. https://doi.org/10.1016/j.jmb.2011.02.028
dc.relationJaña, G. A. (2018). QM/MM Approach on the structural and stereolectronic Factors governing glycosylation by GTF-SI from streptococcus mutans. Organic y Biomolecular Chemistry, 14, 1–4. https://doi.org/10.1039/C8OB00284C
dc.relationJiménez, C. (2002). Análisis de Interfases Metálicas y Su Modificación Por Bombardeo Iónico. Universidad Complutense de Madrid.
dc.relationKidd, E. (2005). Essentials of Dental Caries. In Oxford University Press (3rd ed., Vol. 4, Issue 3).
dc.relationKoes, D. R., Baumgartner, M. P., & Camacho, C. J. (2013). Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. Journal of Chemical Information and Modeling, 53(8), 1893–1904. https://doi.org/10.1021/ci300604z
dc.relationKumar, S., & Kumar, S. (2019). Molecular Docking: A Structure-Based Approach for Drug Repurposing. In In Silico Drug Design (pp. 161–189). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816125-8.00006-7
dc.relationLeach, A. R. (2001). Molecular modelling principles and applications (2nd ed.). Prentice Hall.
dc.relationLeemhuis, H., Pijning, T., Dobruchowska, J. M., Leeuwen, S. S. Van, Kralj, S., Dijkstra, B. W., & Dijkhuizen, L. (2013). Glucansucrases : Three-dimensional structures , reactions , mechanism ,alpha-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 163(2), 250–272. https://doi.org/10.1016/j.jbiotec.2012.06.037
dc.relationLipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL.), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
dc.relationMinisterio de salud. (2014). IV Estudio Nacional De Salud Bucal - ENSAB IV (Vol. 3). Morris y Olson, A. (2009). Autodock4 y AutoDockTools4: acoplamiento automático con flexibilidad de receptor selectivo. Computational Chemistry, 16, 85–96. https://doi.org/10.1002 / jcc.21256
dc.relationOchoa, R., Martínez-Pabón, M. C., Arismendi-Echeverri, M. A., Rendón-Osorio, W. L., & Muskus-López, C. E. (2017). In silico search of inhibitors of Streptococcus mutans for the control of dental plaque. Archives of Oral Biology, 83, 68–75. https://doi.org/doi:10.1016/j.archoralbio.2017.06.027
dc.relationOsorio, M. I., Zúñiga, M. A., Mendoza, F., Jaña, G. A., & Jiménez, V. A. (2018). Modulation of glucan-enzyme interactions by domain V in GTF-SI from Streptococcus mutans. WILEY Proteins, July, 1–7. https://doi.org/10.1002/prot.25624
dc.relationPan, W., Fan, M., Wu, H., Melander, C., & Liu, C. (2015). A new small molecule inhibits Streptococcus mutans biofilms in vitro and in vivo. Journal of Applied Microbiology, 119(5), 1403–1411. https://doi.org/10.1111/jam.12940
dc.relationRen, Z., Cui, T., Zeng, J., Chen, L., Zhang, W., Xu, X., Cheng, L., Li, M., Li, J., Zhou, X., & Li, Y. (2016). Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrobial Agents and Chemotherapy, 60(1), 126–135. https://doi.org/10.1128/AAC.00919-15
dc.relationRodríguez Quintanilla, R., Ruiz Nova, C., Arias Moyano, G., Castro Salazar, H., Martínez, J., & Stashenko, E. (2012). Estudio comparativo de la composición de los aceites esenciales de cuatro especies del género Cymbopogon (Poaceae) cultivadas en Colombia. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 11(1), 77–85.
dc.relationSánchez, L., Mendoza, F., Alderete, J. B., Jiménez, V. A., & Jaña, G. A. (2019). The role of conserved arginine in the GH70 family: A computational study of the structural features and their implications on the catalytic mechanism of GTF-SI from: Streptoccocus mutans. Organic and Biomolecular Chemistry, 17(25), 6269–6276. https://doi.org/10.1039/c9ob01055f
dc.relationSantillán, M. (2015). El uso tradicional de las plantas medicinales, un aporte para la ciencia. Universidad Nacional Autónoma de México. http://ciencia.unam.mx/leer/97/El_uso_tradicional_de_las_plantas_medicinales_un_aporte_para_la_ciencia
dc.relationSantos, L. H. S., Ferreira, R. S., & Caffarena, E. R. (2019). Integrating Molecular Docking and Molecular Dynamics Simulations. In Docking Screens for Drug Discovery, Methods in Molecular Biology (1st ed., Vol. 2053, p. 22). Springer. https://doi.org/doi.org/10.1007/978-1-4939-9752-7_2
dc.relationSchött, G., Liesegang, S., Gaunitz, F., Gleß, A., Basche, S., Hannig, C., & Speer, K. (2017). The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia, 121(May), 118–128. https://doi.org/10.1016/j.fitote.2017.07.005
dc.relationSchwarts, R Anachem, M. S. G., Fritz, T., & Anachem, D. (2012). Molecular Modellin for Beginners (2nd ed.).
dc.relationSelwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. In Lancet (Vol. 369, Issue 9555, pp. 51–59). https://doi.org/10.1016/S0140-6736(07)60031-2
dc.relationStudio, D. (2015). Dassault Systemes BIOVIA, Discovery Studio Modelling Environment,Release 4.5. Accelrys Software Inc.
dc.relationTeles, B., Murbach, Braga, C. P., Carolo, K., Barbosa, L. N., Lúcia, V., Rall, M., Sforcin, J. M., Angélica, A., Fernandes, H., & Júnior, A. F. (2014). Effect of Inhaling Cymbopogon martinii Essential Oil and Geraniol on Serum Biochemistry Parameters and Oxidative Stress in Rats. Biochemistry Research International, 2014, 1–7. https://doi.org/10.1155/2014/493183
dc.relationTofiño-Rivera, A., Ortega-Cuadros, M., Galvis-Pareja, D., Jiménez-Rios, H., Merini, L. J., & Martínez-Pabón, M. C. (2016). Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. Journal of Ethnopharmacology, 194, 749–754. https://doi.org/doi.org/10.1016/j.jep.2016.10.044
dc.relationTrott, O., & Olson, A. J. (2012). Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc
dc.relationZhang, Q., Nijampatnam, B., Hua, Z., Nguyen, T., Zou, J., Cai, X., Michalek, S. M., Velu, S. E., & Wu, H. (2017). Structure-Based Discovery of Small Molecule Inhibitors of Cariogenic Virulence. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-06168-1
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleEstudio de las interacciones entre terpenos y la enzima glucosiltransferasa del patógeno oral streptococcus mutans.


Este ítem pertenece a la siguiente institución