dc.contributorZamora Ávila, David Andrés
dc.contributorhttps://orcid.org/0000-0002-2256-7054
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001370654
dc.contributorUniversidad Santo Tomás
dc.creatorOrdóñez Aldana, Cristian Camilo
dc.date.accessioned2021-05-04T16:22:19Z
dc.date.available2021-05-04T16:22:19Z
dc.date.created2021-05-04T16:22:19Z
dc.date.issued2021-04-12
dc.identifierOrdóñez Aldana, C. C. (2021). Cuantificación de concentraciones de determinantes de calidad del agua a partir de información teledetectada, en el río Magdalena. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifierhttp://hdl.handle.net/11634/33930
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.description.abstractRemote sensing systems have become increasingly important today by providing reliable and readily available information, filling the data gaps that prevent the monitoring and evaluation of water quality dynamics along a river. The vast majority of rivers in Colombia have limited information to characterize the quality of their waters in time and space. Therefore, the objective of this study is to use remote-detected information to quantify concentrations of the water quality determinants Nitrates, Total Phosphorus and Total Suspended Solids, at monitoring points of the Magdalena River, Colombia. For its development the product MOD13Q1 was used that comes from the information recorded by the satellite MODIS Terra and means the use of reflectance of the bands 645 nm and 858 nm to calculate the indices Turbidity, Chlorophyll-a and Phycocyanin by teledetection algorithms. The concentrations of the aforementioned water quality determinants that were provided by the environmental authorities CORMAGDALENA and IDEAM were also used. Based on this information, regression models were constructed to quantify the determinants according to the calculated indices and their performance was evaluated with the coefficient of determination. For the determinants Total Suspended Solids and Total Phosphorus did not present good results, unlike the Nitrates that, by the logarithmic transformation linear regression model used for its quantification as a function of the minimum values of the Chlorophyll-a index, an R2 = 0.5625 was obtained, This leads to the conclusion that there is a favorable adjustment between the data and the potential use of remote sensing information to characterize some determinants of water quality in places with scarce information or difficult access to execute monitoring activity.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relation[1] S. B. Schroeder et al, "Passive remote sensing technology for mapping bull kelp (Nereocystis luetkeana): A review of techniques and regional case study," Global Ecology and Conservation, vol. 19, pp. e00683, 2019. Available: https://www.sciencedirect.com/science/article/pii/S2351989419301076. DOI: 10.1016/j.
dc.relation[2] United Nations, "About the Sustainable Development Goals," 2015. Available: https://www.un.org/sustainabledevelopment/sustainable-development-goals/.
dc.relation[3] D. Quevedo and N. Walteros, El Recurso Hídrico En El Conflicto Armado En Colombia, Y Su Relevancia En El Proceso De Posconflicto Y Construcción De Paz. (Pachón, Maria ed.) Bogotá: Universidad Externado de Colombia, 2019.
dc.relation[4] UICN (2018). Guía de Monitoreo Participativo de la Calidad de Agua. Quito – Ecuador: UICN.
dc.relation[5] M. Labrador, J. Évora and M. Pérez, Satélites De Teledetección Para La Gestión Del Territorio; 2012
dc.relation[6] Novo, Evlyn Márcia Leão de Moraes et al, "Proposal for a remote sensing trophic state index based upon Thematic Mapper/Landsat images," Revista Ambiente & Água, vol. 8, (3), pp. 65-82, 2013. Available: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2013000300006&lng=en&tlng=en. DOI: 10.4136/ambi-agua.1229.
dc.relation[7] R. Aguirre Gómez, "Análisis espectral del Lago de Guadalupe, mediante imágenes de satélite y datos in situ," Investigaciones Geográficas, Boletín Del Instituto De Geografía, vol. 2015, (86), pp. 15-24, 2015. Available: https://www.sciencedirect.com/science/article/pii/S0188461115300030. DOI: 10.14350/rig.42338.
dc.relation[8] T. W. P. Rodrigues et al, "DELINEAMENTO AMOSTRAL EM RESERVATÓRIOS UTILIZANDO IMAGENS LANDSAT-8/OLI: UM ESTUDO DE CASO NO RESERVATÓRIO DE NOVA AVANHANDAVA (ESTADO DE SÃO PAULO, BRASIL)," Boletim De Ciências Geodésicas, vol. 22, (2), pp. 303-323, 2016. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::434fefd22a269f33da6d9aee7e0bbf8f. DOI: 10.1590/S1982-21702016000200017.
dc.relation[9] C. M. Rudorff, Novo, Evlyn M. L. M and L. S. Galvão, "Análise derivativa de dados hiperespectrais medidos em nível de campo e orbital para caracterizar a composição de águas opticamente complexas na Amazônia Derivative analysis of hyperespectral data measured at field and orbital level to characterize the composition of optically complex waters in the amazon," Acta Amazonica, vol. 37, (2), pp. 269-280, 2007. Available: https://www.openaire.eu/search/publication?articleId=doajarticles::a91edbfe97c1f0f347b64fd7c9e3e6a7. DOI: 10.1590/S0044-59672007000200014.
dc.relation[10] Alexander Perdomo Vanegas, "Predicción de parámetros físico químicos de calidad del agua mediante el uso de sensores remotos: caso de estudio embalse del Neusa," 2015.
dc.relation[11] Gómez Diaz, J.L., & Delance-Martinic, J.S. (2014). Determinación del parámetro sólidos sus-pendidos totales (sst) mediante imágenes de sensores ópticos en un tramo de la cuenca media del río Bogotá (Colombia). UD y la Geomática, (9), pp 19-27.
dc.relation[12] I. Carrillo and J. Medina, "Suspended Solids in the Gulf of Urabá Colombia – Annual Average Estimation Using MODIS MYD09Q1 Images," Trends and Advances in Information Systems and Technologies, pp. 88-97, 2018. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/chapter/10.1007/978-3-319-77712-2_9. DOI: 10.1007/978-3-319-77712-2_9.
dc.relation[13] L. C. González-Márquez et al, "Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia," Journal of South American Earth Sciences, vol. 82, pp. 231-238, 2018. Available: https://www.sciencedirect.com/science/article/pii/S0895981117303802. DOI: 10.1016/j.jsames.2018.01.004.
dc.relation[14] F. Torres-Bejarano et al, "La modelación hidrodinámica para la gestión hídrica del embalse del Guájaro, Colombia," Revista Internacional De Métodos Numéricos Para Cálculo Y Diseño En Ingeniería, vol. 32, (3), pp. 163-172, 2016. Available: https://www.sciencedirect.com/science/article/pii/S0213131515000310. DOI: 10.1016/j.rimni.2015.04.001.
dc.relation[15] F. Sacristán Romero, "La teledetección satelital y los sistemas de protección ambiental," AquaTIC: Revista Electrónica De Acuicultura, (24), pp. 13-41, 2006. Available: http://dialnet.unirioja.es/servlet/oaiart?codigo=2041195.
dc.relation[16] Convenio especial de cooperación en ciencia y tecnología No., 1-0016-2016., "Aunar esfuerzos técnicos para la realización de una campaña de monitoreo de cantidad y calidad de agua en el área hidrográfica del río magdalena-cauca y sus tributarios, en el marco de la política nacional para la gestión integral del recurso hídrico (GIRH) y el plan de acción trianual de CORMAGDALENA." Feb, 2017.
dc.relation[17] ORGANIZACIÓN COLPARQUES , 2020. Lagunas de La Magdalena y Santiago. Available: http://www.colparques.net.
dc.relation[18] C. Garay et al, "Campaña de monitoreo de calidad de aguas de la cuenca Magdalena-Cauca," 2016.
dc.relation[19] IDEAM - CORMAGDALENA, "Informe final - convenio nº 024/2005," Bogotá, 2006.
dc.relation[20] IDEAM - CORMAGDALENA, "Monitoreo de calidad y cantidad del agua superficial en el área hidrográfica de los ríos magdalena cauca y sus principales afluentes en jurisdicción de la corporación autónoma regional del río grande de la magdalena," Noviembre. 2014.
dc.relation[21] Convenio especial de cooperación en ciencia y tecnología No., 1-0016-2016., "Aunar esfuerzos técnicos para la realización de una campaña de monitoreo de cantidad y calidad de agua en el área hidrográfica del río magdalena-cauca y sus tributarios, en el marco de la política nacional para la gestión integral del recurso hídrico (GIRH) y el plan de acción trianual de CORMAGDALENA," Feb, 2017.
dc.relation[22] United States Environmental Protection Agency and O. W. US EPA, "Indicators: Chlorophyll a," Us Epa, -11-21T09:24:54-05:00, 2013.
dc.relation[23] M. Martínez-Orjuela et al, "Evaluación de la turbiedad como parámetro indicador del tratamiento en una planta potabilizadora municipal," Revista UIS Ingenierías, vol. 19, (1), pp. 15-24, 2020. Available: https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/9929. DOI: 10.18273/revuin.v18n4-2020001.
dc.relation[24] Innovación y Cualificación, S. L. and S. L. Target asesores, Experto En Gestión Medioambiental. (2nd ed.) ic editorial, 2016.
dc.relation[25] G. J. Mchau et al, "Phycocyanin as a proxy for algal blooms in surface waters: case study of Ukerewe Island, Tanzania," Water Practice and Technology, vol. 14, (1), pp. 229-239, 2019. Available: https://iwaponline.com/wpt/article/14/1/229/65408/Phycocyanin-as-a-proxy-for-algal-blooms-in-surface. DOI: 10.2166/wpt.2019.005.
dc.relation[26] YSI Inc. and Xylem Inc, "The basics of chlorophyll measurement in surface water explained," 2021. Available: https://www.ysi.com/Accessory/id-6025/6025-Chlorophyll-Sensor.
dc.relation[27] ClickSonic, "Cyanobacteria, blue-green algae in water and their treatment," 2019. Available: https://www.clicksonic.com/en/frequently-asked-questions/cyanobacteria-blue-green-algae-in-water-and-their-treatment.html.
dc.relation[28] CORMAGDALENA, "Río Magdalena," 2016. Available: http://dc02eja.cormagdalena.com.co/index.php?idcategoria=372.
dc.relation[29] P. Foladori, G. Andreottola and G. Ziglio, Sludge Reduction Technologies in Wastewater Treatment Plants. London: 2010.
dc.relation[30] COMUNIDAD ANDINA. Manual de Estadísticas Ambientales. CAN: Santa Cruz de la Sierra, 2005. p. 31-45.
dc.relation[31] United States Geological Survey, "Nitrogen and Water," May 17, 2020.
dc.relation[32] United States Geological Survey, "Phosphorus and Water," May 21, 2020.
dc.relation[33] N. Chang, S. Imen and B. Vannah, "Remote Sensing for Monitoring Surface Water Quality Status and Ecosystem State in Relation to the Nutrient Cycle: A 40-Year Perspective," Critical Reviews in Environmental Science and Technology, vol. 45, (2), pp. 101-166, 2015. Available: http://www.tandfonline.com/doi/abs/10.1080/10643389.2013.829981. DOI: 10.1080/10643389.2013.829981.
dc.relation[34] S. Milrad, "11 - satellite imagery," in Synoptic Analysis and Forecasting, S. Milrad, Ed. 2018, Available: http://www.sciencedirect.com/science/article/pii/B9780128092477000119.
dc.relation[35] Radiant Earth Foundation et al, "The Science of Collecting Information about our Radiant Earth," 2016. Available: https://www.radiant.earth/infographic/the-view-from-above/.
dc.relation[36] Infraestructura de Datos Espaciales de Bogotá, 2019. Resolución espectral. Available: https://ideca.gov.co .
dc.relation[37] G. Sánchez, "Espectro electromagnético ," Enero, 2021.
dc.relation[38] Universidad de Murcia, "Plataformas, sensores y canales," SF. Available: https://www.um.es/geograf/sigmur/teledet/tema03.pdf.
dc.relation[39] A. García Varela, 2018 "Landsat" https://es.scribd.com/document/52385174/LANDSAT.
dc.relation[40] Francis Gohin, "Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving?" Remote Sensing of Environment, 2019.
dc.relation[41] GeoService Perú, "INFORMACION TECNICA RESUMIDA –LANDSAT 7 ETM, 2019" .
dc.relation[42] K. Didan, "MOD13Q1 v006. MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid," NASA LP DAAC at the USGS EROS Center, Febrero 18, 2000.
dc.relation[43] The United Nations Office for Outer Space Affairs, (UNOOSA). (Mar 7,). In Detail: Drought monitoring using the Standard Vegetation Index (SVI). Available: https://un-spider.org/advisory-support/recommended-practices/recommended-practice-agricultural-drought-monitoring-svi/in-detail.
dc.relation[44] M. E. D. Chaves, E. Ferreira and A. A. A. Dantas, "Threshold’s definition in MOD13Q1 and VGT-S10 time series for coffee crop area estimation in Triângulo Mineiro/Alto Paranaíba," Theoretical and Applied Engineering, vol. 3, (2), pp. 1-10, 2019. Available: http://www.taaeufla.deg.ufla.br/index.php/TAAE/article/view/15.DOI:10.31422/taae.v3i2.15.
dc.relation[45] Vargas-Sanabria, D; Campos-Vargas, C. Sistema multialgoritmo para la clasificación de coberturas de la tierra en el bosque seco tropical del Área de Conservación Guanacaste, Costa Rica. Tecnología en Marcha. Vol. 31-1. Enero-marzo 2018. Pág 58-69. DOI: 10.18845/tm.v31i1.3497.
dc.relation[46] Johansen R., Reif M., Emery E., Nowosad J., Beck R., Xu M., Liu H., waterquality: An Open-Source R Package para la detección y cuantificación de floraciones de algas nocivas por cianobacterias y calidad del agua. USACE ERDC / EL TR-19-20; DOI: 10.21079 / 11681/35053).
dc.relation[47] R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relation[48] GERALD K. MOORE (1980) Satellite remote sensing of water turbidity / Sonde de télémesure par satellite de la turbidité de l'eau, Hydrological Sciences Journal, 25:4, 407-421, DOI: 10.1080/02626668009491950 .
dc.relation[49] Beck, R., S. Zhan, H. Liu, S. Tong, B. Yang, M. Xu, Z. Ye, Y. Huang, S. Shu, Q. Wu, S. Wang, K. Berling, A. Murray, E. Emery, M. Reif, J. Harwood, J. Young, C. Nietch, D. Macke, M. Martin, G. Stillings, R. Stumpf, AND H. Su. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. REMOTE SENSING OF ENVIRONMENT. Elsevier Science Ltd, New York, NY, 178:15-30, (2016).
dc.relation[50] Eearth Observing System. (-10-17T14:11:08Z). NDVI: Normalized Difference Vegetation Index for Agriculture. Available: https://eos.com/ndvi/.
dc.relation[51] L. González, "Regresión Lineal Simple - Teoría," -11-30T11:34:31+00:00, 2018.
dc.relation[52] K. Yeager. (Jan 6,2021). LibGuides: SPSS Tutorials: Pearson Correlation. Available: https://libguides.library.kent.edu/SPSS/PearsonCorr.
dc.relation[53] G. Grolemund and H. Wickham, 23 Modelos: Conceptos Básicos | R Para Ciencia De Datos. SFAvailable: http://es.r4ds.hadley.nz/.
dc.relation[54] M. Rodríguez, "Interpretación de los Gráficos de Caja en el Análisis Descriptivo e Inferencial." 2015. Available: https://www.qvision.es/blogs/manuel-rodriguez/2015/03/30/interpretacion-de-los-graficos-de-caja-en-el-analisis-descriptivo-e-inferencial/.
dc.relation[55] M. Paladino, "Modelos lineales con R," 2017. Available: https://www.institutomora.edu.mx/testU/SitePages/martinpaladino/modelos_lineales_con_R.html#introduccion.
dc.relation[56] J. Marín, "El procedimiento regresión lineal," in Análisis De Regresión Lineal, España: Universidad Carlos III de Madrid, 2019, pp. Capítulo 18.
dc.relation[57] C. Ford, "Interpreting Log Transformations in a Linear Model," University of Virginia Library, 2018. Available: https://data.library.virginia.edu/interpreting-log-transformations-in-a-linear-model/.
dc.relation[58] R core, "Nonlinear Least Squares - nls," SF. Available: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/nls.
dc.relation[59] Montero Granados. R (2016): Modelos de regresión lineal múltiple. Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España.
dc.relation[60] J. Amat Rodrigo, "Introducción a la regresión lineal múltiple," Madrid, España, Julio, 2016.
dc.relation[61] A. Kassambara, Machine Learning Essentials: Practical Guide in R. (1st ed.) STHDA - Statistical tools for high-throughput data analysis, 2018.
dc.relation[62] Mangiafico, SS 2016. Resumen y análisis de la evaluación del programa de extensión en R, versión 1.18.6. rcompanion.org/handbook/ . (Versión en pdf: rcompanion.org/documents/RHandbookProgramEvaluation.pdf .)
dc.relation[63] F. Hernández and M. Mazo, 7 Pruebas De Hipótesis Parte I | Modelos De Regresión Con R. (1st ed.) 2020Available: https://fhernanb.github.io/libro_regresion/ph1.html.
dc.relation[64] SOTO-BRAVO, Freddy and GONZALEZ-LUTZ, María Isabel. Análisis de métodos estadísticos para evaluar el desempeño de modelos de simulación en cultivos hortícolas. Agron. Mesoam [online]. 2019, vol.30, n.2 [cited 2021-01-21], pp.517-534. Available from: <http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1659-13212019000200517&lng=en&nrm=iso>. ISSN 2215-3608. http://dx.doi.org/10.15517/am.v30i2.33839.
dc.relation[65] T. Srivastava, "11 Important Model Evaluation Metrics for Machine Learning Everyone should know," Analytics Vidhya, 2019. Available: https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/.
dc.relation[66] J. Brownlee, "Metrics to Evaluate Machine Learning Algorithms in Python," Agosto 21, 2020. Available: https://machinelearningmastery.com/metrics-evaluate-machine-learning-algorithms-python/.
dc.relation[67] B. Maccherone and S. Frazier, "Data Products - MODIS," Modis.Gsfc.Nasa.Gov, Available: https://modis.gsfc.nasa.gov/data/dataprod/.
dc.relation[68] B. S. NASA Offical, "EARTHDATA OPEN ACCESS FOR OPEN SCIENCE," SF. Available: https://earthdata.nasa.gov/.
dc.relation[69] A. Germán et al, "Análisis de una serie temporal de clorofila-a apartir de imágenes MODIS de un embalseeutrófico," 2016. Available: https://www.researchgate.net/publication/309338823_Analisis_de_una_serie_temporal_de_clorofila-a_a_partir_de_imagenes_MODIS_de_un_embalse_eutrofico.
dc.relation[70] M. D. Steven, "The Sensitivity of the OSAVI Vegetation Index to Observational Parameters," Remote Sensing of Environment, vol. 63, (1), pp. 49-60, 1998. Available: http://www.sciencedirect.com/science/article/pii/S0034425797001144. DOI: 10.1016/S0034-4257(97)00114-4.
dc.relation[71] R-Core, "lm - Fitting Linear Models," SF. Available: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lm.
dc.relation[72] S. Mishra and D. R. Mishra, "Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters," Remote Sens. Environ., vol. 117, pp. 394-406, 2012. Available: https://www-sciencedirect-com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0034425711003737. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.rse.2011.10.016.
dc.relation[73] R. Beck et al, "Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations," Remote Sens. Environ., vol. 178, pp. 15-30, 2016. Available: https://www-sciencedirect-com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0034425716300943. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.rse.2016.03.002.
dc.relation[74] R. M. C. Castañeda, "Ingeniería ambiental II - contaminación hídrica - sólidos suspendidos totales," Nov 26, 2014.
dc.relation[75] P. Vinuesca, "Tema 8 - correlación: Teoría y práctica," Centro de Ciencias Genómicas UNAM, México, octubre 14, 2016.
dc.relation[76] E. Rodríguez, Errores Frecuentes En La Interpretación Del Coeficiente De Determinación Lineal. San Lorenzo del Escorial: Real Centro Universitario, pp 315-332, ISSN: 1133-3677, 2005.
dc.relation[77] Minitab, "Análisis de Regresión: ¿Cómo Puedo Interpretar el R-cuadrado y Evaluar la Bondad de Ajuste?" Análisis De Datos, Estadística, Abril 18, 2019.
dc.relation[78] A. Guanga. (01-02T15:43:49.664Z). Understand Regression Performance Metrics, 2019 Available: https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
dc.relation[79] S. Wu. (May 23, 2020). 3 best metrics to evaluate Regression Model - R Square, Adjusted R Square, MSE, RMSE, MAE. Available: https://towardsdatascience.com/what-are-the-best-metrics-to-evaluate-your-regression-model-418ca481755b.
dc.relation[80] B. Bose, (Ago 17, 2020). "Performance Metrics: Regression Model," Medium, 2020. Available: https://medium.com/analytics-vidhya/performance-metrics-regression-model-69f68a18504f.
dc.relation[81] D. Mishra. (Dic 6, 2019). Regression: An Explanation of Regression Metrics and What Can Go Wrong. Available: https://towardsdatascience.com/regression-an-explanation-of-regression-metrics-and-what-can-go-wrong-a39a9793d914.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleCuantificación de concentraciones de determinantes de calidad del agua a partir de información teledetectada, en el río Magdalena


Este ítem pertenece a la siguiente institución