dc.contributorTorres, Carlos Eduardo
dc.contributorhttps://orcid.org/0000-0001-7956-4391
dc.contributorhttps://scholar.google.es/citations?user=d-W9uvAAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001508029
dc.contributorUniversidad Santo Tomás
dc.creatorAcevedo Lemus, Julián Ricardo
dc.date.accessioned2021-07-15T18:47:58Z
dc.date.available2021-07-15T18:47:58Z
dc.date.created2021-07-15T18:47:58Z
dc.date.issued2021-07-14
dc.identifierAcevedo Lemus, J. R. (2021). Estado del arte de tecnologías autoreparantes en concretos y pavimentos. [Tesis de pregrado, Universidad Santo Tomás].
dc.identifierhttp://hdl.handle.net/11634/34927
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThis document was carried out with the objective of conducting a review of the state of the art and the implementation of self-healing technologies in existing concrete and pavements, in order to establish the bases for future researches. It is relevant to mention that this is a qualitative investigation where a documentary analysis was made of the different methods that have emerged to help concrete and pavements heal themselves, recovering the mechanical properties of the material or even improving them. The importance of knowing these new technologies is that the maintenance costs and their derived costs are too expensive, and could be mitigated if the materials could extend their life - cycle, being cured microscopically to avoid macroscopic damages that compromise the performance of the materials and the structures themselves. This can be achieved in various ways. Different authors have developed technologies, some more effectively than others. In terms of concrete, these technologies can be grouped into three; natural, chemical and biological. The natural is mainly due to the formation of calcium hydroxide and calcium carbonate, chemical one includes artificial curing due to the injection of chemical components into the cracks of the structure, these chemical components can be either encapsulated in microcapsules or in capillary tubes inside the concrete matrix, and the biological one also uses microcapsules, but the healing agent used is bacterial spores. In asphalt there are three technologies, incorporation of nanoparticles, induction heating and rejuvenators. Nanoparticles has two different materials, nanoclay and nanorubber, these are used as modifiers to improve the physical and mechanical properties of the binders, helping the in-situ performance of the asphalt pavement. Induction heating consists of conductive additives that can heat and help re-agglomerate asphalt components helping to close microcracks, the main ones used were steel wool, steel fibers and carbon fibers. And the last one; the rejuvenators, these were also used in microcapsules that went together with the bituminous mixture, the purpose of the rejuvenators is to diffuse into the aged binder and help restore the original molecular structure to extend the life - cycle of the pavement. In the end, it can be seen that the initial investment costs by including self-repairing technologies are higher, but these are offset by the extension of the useful life of the structures, reducing maintenance and repair costs, which if it is contrasted with a regular structure, it is possible to understand the benefit of pavements and concretes that use self-healing technologies.
dc.publisherPregrado Ingeniería Civil
dc.relation20 minutos. (1 de Julio de 2014). Nueva York sufre el frío más intenso desde hace 118 años. 20 minutos.
dc.relationAchal, V., Mukherjee, A., & Reddy, M. S. (2010). Microbial Concrete: Way to Enhance the Durability of Building Structures. Materials in Civil Engineering, 730 - 734.
dc.relationBaluska, F., Volkmann, D., & Barlow, P. W. (2006). Cell-cell channels and their implications for cell theory, in cell-cell channels. Springer, 1 - 18.
dc.relationBauer, S., Schmuki, P., Mark, K. v., & Park, J. (2013). Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Progress in Materials Science, 261- 326.
dc.relationBraissant, O., Verrecchia, E. P., & Aragna, M. (2002). Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften, 366 - 370.
dc.relationCastainer, S., Le, M. G., & Perthuisot, J. P. (2000). Bacterial roles in the precipitation of carbonate minerals. En In microbial sediments (págs. 32- 39). Heidelberg: Springer-Verlag.
dc.relationChávez, R. (2009). Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Frontiers in microbiology, 903.
dc.relationChen, P., McKittrick, J., & Meyers, M. A. (2012). Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 1492 - 1704.
dc.relationDaisuke Homma, H. M. (2009). Self-Healing Capability of Fibre Reinforced Cementitious Composites. Journal of Advanced Concrete Technology , 217 - 228.
dc.relationDelft University of Technology. (13 de Abril de 2007). EurekAlert. Obtenido de https://www.eurekalert.org/pub_releases/2007-04/duot-fic_1041307.php
dc.relationDelft University Tecnology. (2007). First international conference on self-healing materials.
dc.relationDouglas, S., & Beveridge, T. J. (1998). Mineral formation by bacteria in natural Communities. FEMS Microbiology Ecology, 79 - 88.
dc.relationDry, C. (1994 ). Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Materials and Structures, 118.
dc.relationEl Espectador. (20 de enero de 2014). elespectador.com. Obtenido de https://www.elespectador.com/noticias/nacional/ordenan-demoler-todas-las-torres-del-edificio-space/
dc.relationEl Espectador. (8 de Septiembre de 2015). Récord de calor en Nueva York. El Espectador.
dc.relationEmmons, P., & Sordyl, D. (2006). The state of the concrete repair industry, and a vision for its future. Concrete repair bulletin, 7 - 14.
dc.relationEuropean Union Road Federation. (2012). European road statistics 2012. Brussels: European Union Road Federation (ERF).
dc.relationFang, C., Yu, R., Liu, S., & Li, Y. (2013). Nanomaterials applied in asphalt modification: a review. Materials Science and Technology, 589 - 594.
dc.relationFerris, F. G., Fyfe, W. S., & Beveridge, T. J. (1987). Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology, 149 - 152.
dc.relationFreyermuth, C. L. (2001). Life-Cycle Cost Analysis for Large Bridges. Concrete International, 89 - 95.
dc.relationGarcía, Á. (2012). Self-healing of open cracks in asphalt mastic. Fuel, 264-272.
dc.relationGarcía, A., Jelfs, J., & Austin, C. J. (2015). Internal asphalt mixture rejuvenation using capsules. Construction and Building Materials, 309 - 316.
dc.relationGarcia, A., Schlangen, E., & Ven, M. V. (2010). Two ways of closing cracks on asphalt concrete pavements: microcapsules and induction heating. Key Engineering Materials, 573 - 576.
dc.relationGarcía, A., Schlangen, E., Ven, M. v., & Lu, Q. (2009). Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Construction and Building Materials, 3175 - 3181.
dc.relationGarside, M. (17 de Febrero de 2021). Major countries in worldwide cement production 2010-2020. Obtenido de statista.com: https://www.statista.com/statistics/267364/world-cement-production-by-country/
dc.relationGhosh, P., & Mandal, S. (2006). Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian Journal of Experimental Biology, 336 - 339.
dc.relationGhosh, S. K. (2009). Self-Healing Materials: Fundamentals, Design Strategies, and Applications. Weinheim: Wiley WCH.
dc.relationH. Mihashi, Y. K. (2000). Fundamental study on development of intelligent concrete characterized by self-healing capability for strength. Transactions of the Japan Concrete Instite, 441- 450.
dc.relationHan, N.-X., & Xing, F. (2016). A Comprehensive Review of the Study and Development of Microcapsule Based Self-Resilience Systems for Concrete Structures at Shenzhen University. Materials, 10.
dc.relationHartnett, K. (2014). Why is ancient Roman concrete still standing? Boston Globe.
dc.relationHearn, N., & Morley, C. T. (1998). Self-healing property of concrete – experimental evidence . Materials & Structures, 563.
dc.relationHilloulin, B., Tittelboom, K., Gruyaert, E., Belie, N. D., & Loukili, A. (2015). Design of polymeric capsules for self-healing concrete. Cement and Concrete Composites, 298 - 307.
dc.relationHolt, J. G., Kried, N. R., Senath, P. H., Staley, J. T., & Williams, S. T. (1993). Williams and Wikins, 786 - 788.
dc.relationHomma, D., Mihashi, H., & Nishiwaki, T. (2009). Self-Healing Capability of Fibre Reinforced Cementitious Composites. Journal of Advanced Concrete Technology, 217 - 228.
dc.relationHT, M., & AP, V. (2013). Influence of fiber polymer reinforced asphalt concrete pavement in high temperature environment. Proceedings of the 2nd electronic international interdisciplinary conference (págs. 465–468). Zilina, Slovak Republic: EICC.
dc.relationIDEAM. (9 de Febrero de 2017). BOGOTÁ SUPERÓ SU PICO HISTÓRICO DE TEMPERATURA. Obtenido de ideam.gov.co: http://www.ideam.gov.co/web/intranet/noticias/-/asset_publisher/gO37c5HXVo8L/content/bogota-supero-su-pico-historico-de-temperatura?_101_INSTANCE_gO37c5HXVo8L_redirect=http%3A%2F%2Fwww.ideam.gov.co%2Fweb%2Fintranet%2Fnoticias%3Fp_p_id%3D101_INSTANCE_gO37c
dc.relationIndustry, A. C. (2018). Cement Industry. Obtenido de http://www.cement.org.au/AustraliasCementIndustry/CIFFastFacts.aspx.
dc.relationJonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 230 - 235.
dc.relationJoseph, C., Jefferson, A. D., & Cantoni, M. B. (2007). Issues relating to the autonomic healing of cementitious materials . Proceedings of first international conference on self-healing materials (pág. Paper 61). Noordwijkaan Zee, Netherlands: Springer CDROM.
dc.relationJoseph, C., Jefferson, A., Isaacs, B., Lark, R., & Gardner, a. D. (2010). Experimental investigation of adhesive-based self-healing of cementitious materials. Magazine of Concrete Research, 831 - 843.
dc.relationKringos, N., Schmets, A., & Scarpas, A. (2011). Towards an understanding of the selfhealing capacity of asphaltic mixtures. HERON, 45 - 74.
dc.relationKumar, P. G. (2020 ). Mixtures, Application of Nano Silica to Improve Self-Healing of Bitumen. CRPASE: TRANSACTIONS OF CIVIL AND ENVIRONMENTAL ENGINEERING, 276 - 280.
dc.relationLa República. (17 de Octubre de 2014). larepublica.co. Obtenido de https://www.larepublica.co/economia/idu-iniciara-reparacion-de-vias-de-transmilenio-y-sitp-con-una-inversion-de-61754-millones-2181666
dc.relationLee, Y. S., & Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology.
dc.relationLi, V. C., & Yang, E. (2007). An alternative approach to 20 centuries of materials science. En Self Healing Materials (págs. 161 - 194). The Netherlands: Springer.
dc.relationLi, V., Lim, Y. M., & Chan, Y. W. (1998). Feasibility study of a passive smart self-healing cementitious composite. Composites Part B, 819 - 827.
dc.relationLi, W., Zhu, X., Zhao, N., & Jiang, Z. (2016). Preparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials. Materials, 152.
dc.relationLiu, K., Tian, Y., & Jiang, L. (2013). Bio-inspired superoleophobic and smart materials: Design fabrication, and application. Progress in Materials Science, 503 - 564.
dc.relationLiu, Q. (2012). Induction healing of porous asphalt concrete. Delft: Delft University of Technology.
dc.relationLiu, Q., Schlangen, E., & Bochove, G. v. (2013). The first engineered selh - healing asphalt road; How is it performing? Materials & Enviroment.
dc.relationLiu, Q., Schlangen, E., García, Á., & Ven, M. v. (2010). Induction heating of electrically conductive porous asphalt concrete. Construction and Building Materials, 1207 - 1213.
dc.relationLiu, X., & Wu, S. (2011). Study on the graphite and carbon fiber modified asphalt concrete. Construction and Building Materials, 1807 - 1811.
dc.relationLuhar, S. (2015). A Review Paper on Self Healing Concrete. Journal of Civil Engineering Research, 53-58.
dc.relationLuo, J., Chen, X., Crump, J., Zhou, H., Davies, D. G., Zhou, G., . . . Jin, C. (2018). Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction and building materials, 275 - 285.
dc.relationMartinez, J. C., Equihua, R. O., & Quiñones, J. G. (2017). Acerca del Desarrollo y Control de Microorganismos en la Fabricación de Papel. Conciencia Tecnológica .
dc.relationMcNally, T. (2011). Polymer modified bitumen properties. Philadelphia: Woodhead.
dc.relationMinsk, L. D. (1968). Electrically conductive asphalt for control of snow and ice accumulation. Transportation Research Board, 57 - 63.
dc.relationMinsk, L. D. (1971). US Patente nº 3,573,427.
dc.relationMoldovan, A., Patachia, S., Vasile, C., Darie, R., Manaila, E., & Tierean, M. (2010). Natural Fibres/Polyolefins Composites (I) UV and Electron Beam Irradiation J. Biobased Mater. Journal of Biobased Materials and Bioenergy, 58 - 79.
dc.relationMuynck, W. D., Cox, K., Belie, N. D., & Verstraetea, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 875 - 885.
dc.relationNilson, A. H. (2001 ). Diseño de Estructuras en Concreto. Bogotá: Mc Graw Hill.
dc.relationNishiwaki, C. (1997). Fundamental study on development of intelligent concrete with self-healing capability. Sendai, Japón: Department of Architecture and Building Science.
dc.relationNishiwaki, T., Mihashi, H., Jang, B.-K., & Miura, K. (2006). Development of Self-Healing System for Concrete with Selective Heating around Crack. Journal of Advanced Concrete Technology, 267 - 275.
dc.relationNishiwaki, T., Mihashi, H., Jang, B.-K., & Miura, K. (2006). Development of Self-Healing System for Concrete with Selective Heating around Crack. Journal of Advanced Concrete Technology, 267 - 275.
dc.relationOliveira, J., Silva, H., Abreu, L., & Pereira, P. (2012). Effect of Different Production Conditions on the Quality of Hot Recycled Asphalt Mixtures. Procedia - Social and Behavioral Sciences, 266 - 275.
dc.relationPang, J., & Bond, I. (2005). Bleeding composites’—damage detection and self-repair using a biomimetic approach. Composites: Part A, 183 - 188.
dc.relationQian, S., Zhou, J., Rooij, M. d., Schlangen, E., Ye, G., & Breugel, K. v. (2009). Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cement & Concrete Composites, 613 - 621.
dc.relationQiu, J., Ven, M. F., Wu, S., Yu, J., & Molenaar, A. A. (2009). Investigation of self healing capability of bituminous binders. Road Materials ans Pavement Design, 81 - 94.
dc.relationRamachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of Concrete Using Microorganisms. ACI. Materials, 3 - 9.
dc.relationRCN radio. (Enero de 2018). www.rcnradio.com. Obtenido de https://www.rcnradio.com/bogota/8-mil-losas-transmilenio-pesimo-estado-ponen-riesgo-los-bogotanos
dc.relationScopus. Obtenido de https://www.scopus.com/term/analyzer.uri?sid=1b3b6e8ad3821140da5dc27b3899f37a&origin=resultslist&src=s&s=TITLE-ABS-KEY%28concrete+healing%29&sort=cp-f&sdt=b&sot=b&sl=31&count=1077&analyzeResults=Analyze+results&txGid=1fb74182c9d05c3809222f714d3fda1a#sprea
dc.relationRiding, R. (2000). Microbial Carbonates: The geological record of calcified bacterial mats and biofilms. . Sedimentology, 179 - 214.
dc.relationSangadji, S., & Schlangen, E. (2011). Feasibility and potential of prefabricated porous concrete as a component to make concrete structures self-healing. RILEM Publications SARL.
dc.relationSchlangel, E. (2013). Other materials, applications and future developments. Self-healing phenomena in cement-based materials, 241 - 256.
dc.relationSemana. (2017). Losas de transmilenio: ahora responden las cementeras. Revista Semana.
dc.relationSemana. (11 de Octubre de 2018). semana.com. Obtenido de https://www.semana.com/nacion/articulo/megapuentes-en-colombia-hisgaura-con-sus-anomalias-enciende-las-alarmas/590266
dc.relationSemana. (2020). Frío extremo y calor sofocante: ¿Qué pasa con el clima en Bogotá? Semana.
dc.relationShen, J., Amirkhanian, S., & Miller, a. J. (2007). Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement. Journal of Materials in Civil Engineering, 376.
dc.relationSidiq, A., Gravina, R., & Giustozzi, F. (2019). Is concrete healing really efficient? A review. Construction and Building Materials, 257 -273.
dc.relationSteyn, W. J. (2009). Potential Applications of Nanotechnology in Pavement Engineering. Transportation Engineering, 764 - 772.
dc.relationSu, J. -F., & Schlangen, E. (2012). Synthesis and physicochemical properties of high compact microcapsules containing rejuvenator applied in asphalt. Chemical Engineering Journal, 289 - 300.
dc.relationSu, J.-F., Qiu, J., & Schlangen, E. (2013). Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polymer Degradation and Stability, 1205 - 1212.
dc.relationSu, J.-F., Qiu, J., Schlangen, E., & Wang, Y.-Y. (2014). Experimental investigation of self-healing behavior of bitumen/microcapsule composites by a modified beam on elastic foundation method. Materials and Structures, 4067 - 4076.
dc.relationSu, J.-F., Qiu, J., Schlangen, E., & Wang, Y.-Y. (2015). Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: In situ rejuvenation for aged bitumen. Construction and Building Materials, 83 - 92.
dc.relationSu, J.‐F., Wang, X.‐Y., Wang, S.‐B., Zhao, Y.‐H., Zhu, K.‐Y., & Yuan, X.‐Y. (2011). Interface stability behaviors of methanol‐melamine‐formaldehyde shell microPCMs/epoxy matrix composites. Polymer Composites, 810 - 820.
dc.relationSwapan Kumar Ghosh. (2009). Self - Healing Materials. Weinheim: WILEY-VCH.
dc.relationTabakovic, A., & Schlangen, E. (2015). Self-Healing Technology for Asphalt Pavements. Advances in Polymer Science, 1 - 22.
dc.relationTabatabaee, N., & Shafiee, M. H. (2012). Effect of organoclay modified binders on fatigue performance. 7th RILEM international conference on cracking in pavements. Delft, The Nederlands: RILEM Bookseries.
dc.relationTalaiekhozani, A., Keyvanfar, A., A. S., Andalib, R., Majid, M. A., Fulazzaky, M. A., . . . Haidar, H. (2014). A Review of Self-healing Concrete Research Development. Journal of Enviromental Treatment Techniques, 1-11.
dc.relationTalaiekhozani, A., Keyvanfar, A., Andalib, R., Samadi, M., Shafaghat, A., Kamyab, H., . . . Hussin, M. W. (2013). Application of Proteus mirabilis and Proteus vulgaris mixture to design self-healing concrete. Desalination and water treatment, 3623 - 3630.
dc.relationToohey, K. S., Sottos, N. R., Lewis, A. L., Moore, J. S., & White, S. R. (10 de June de 2007). nature.com. Obtenido de Self-healing materials with microvascular networks: https://www.nature.com/articles/nmat1934
dc.relationTorres, O. F. (2018). Condiciones físico - geográficas que determinan el tiempo y el clima sobre el territorio colombiano. La variabilidad climática y el cambio climático en Colombia, 20 - 21.
dc.relationU. K. Gollapudi, C. L. (1995). A new method for controlling leaching through permeable channels. Chemosphere, 695 - 705 .
dc.relationWang, J., Dewanckele, J., Cnudde, V., Vlierberghe, S. V., & Belie, W. V. (2014). X-ray computed tomography proof of bacterial-based self-healing in concrete. CEMENT & CONCRETE COMPOSITES, 289- 304.
dc.relationWang, J., Tittelboom, K. V., Belie, N. D., & Verstraete, W. (2012). Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 532 - 540.
dc.relationWhite, S., Sottos, N., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., . . . Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 794 - 817.
dc.relationWILEY-VCH. (2009). Self Healing Materials - Fundamentals, Design Strategies, and Applications. Weinheim: WILEY-VCH Verlag GmbH & Co.
dc.relationWu, M., Johannesson, B., & Geiker, M. (2012). A review: Self-healing in cementitious materials and engineered. Construction and Building Materials, 571 - 583.
dc.relationWu, M., Johannesson, B., & Geiker, M. (2012). A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 571 - 583.
dc.relationWu, S., Mo, L., Shui, Z., & Chen, Z. (2005). Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 1358 - 1363.
dc.relationWu, S., Zhang, Y., & Chen, M. (2010). Research on mechanical characteristics of conductive asphalt concrete by indirect tensile test. Proceedings of the 4th international conference on experimental mechanics. SPIE.
dc.relationWu, S.-p., Liu, X.-m., Ye, Q., & Li, N. (2006). Self-monitoring electrically conductive asphalt-based composite containing carbon fillers. Transactions of Nonferrous Metals Society of China, 512 - 516.
dc.relationZhang, H., Wu, X. H., & Wang, X. L. (2011). Conductivity mechanism of asphalt concrete with the PANI/PP compound conductive fiber. Material Science Forum, 69 - 73.
dc.relationZwaag, S. v. (2010). Routes and mechanisms towards self-healing behavior in engineering materials. The Bulletin of the Polish Academy of Sciences, 227 - 236.
dc.relationZwaag, v. d. (2007). Self Healing Materials - An Alternative Approach to 20 Centuries of Materials Science. The Netherlands : Springer.
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCC0 1.0 Universal
dc.titleEstado del arte de tecnologías autoreparantes en concretos y pavimentos


Este ítem pertenece a la siguiente institución