dc.creatorLópez-Barrera, Ellie Anne
dc.creatorBarragán-Gonzalez, Rafael G.
dc.date.accessioned2019-12-04T14:15:03Z
dc.date.accessioned2022-09-28T13:53:00Z
dc.date.available2019-12-04T14:15:03Z
dc.date.available2022-09-28T13:53:00Z
dc.date.created2019-12-04T14:15:03Z
dc.date.issued2016-03-24
dc.identifierhttp://hdl.handle.net/11634/20110
dc.identifierhttps://doi.org/10.1080/15287394.2016.1149130
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3648447
dc.description.abstractThe risk imposed upon society by consumption of foods contaminated with metals and metalloids is an environmental problem attributed to the increasing number of mining extraction activities currently underway in Colombia. The aim of the current study was to determine concentrations of mercury (Hg), lead (Pb), cadmium (Cd), and a metalloid arsenic (As) found in the species of most consumed fish species by citizens of Bogota D.C. (Colombia), and the consequent potential risk to human health was also calculated. Muscle samples of 8 fish species were obtained from 203 individuals collected through 2014. The highest metal concentrations detected were as follows: Pb in Oncorhynchus sp. (0.0595 mg/ kg), Cd and Hg in Pimelodus sp. (0.0072 and 0.0579 mg/kg, respectively), and As in Scomberomorus sp (0.0471 mg/kg). Further, the levels of metal accumulation from consumption of fish were calculated utilizing the metal pollution index (MPI), with elevated values noted in Pseudoplatystoma sp (0.06 mg/kg), followed by Scomberomorus sp. and Centropomus sp. (0.05 and 0.04 mg/kg, respectively). The multiple species exposure index (Em.j) denotes the level of exposure associated with consumption of various contaminated fish species, and this level occurred in decreasing order as follows: As > Pb > Cd > Hg. The multiple chemical exposure index (Ej.m), which accounts for exposure to multiple metals, identified Prochilodus sp. as the species displaying the highest level of exposure per consumption (8 × 10−6 mg/kg-d). The target hazard quotient (THQ) for human health indicated high levels for Hg and Cd in Prochilodus sp. (0.026 and 0.005, respectively), Pb in Oncorhynchus sp (0.025), and As in Pseudoplatistoma sp. and Centropomus sp. (0.023). Data emphasize the need for adequate nationwide public policies that promote assessment of exposure levels and potential adverse health risks associated with dietary consumption of different fish species in Colombia.
dc.relationAlegria, A., Reyes, B., Lagarda Blanch, M., and Farré Rovira, R. 2012. Biodisponibilidad de sustancias tóxicas en los alimentos. In: Camean A. M; Repeto M. Toxicol Aliment, edited by Diaz de Santos. pp 688.
dc.relationBernstam, L., and Nriagu, J. 2000. Molecular aspects of arsenic stress. J. Toxicol. Environ. Health B 3: 293–322.
dc.relationCarneiro, M. F. H., Grotto, D., and Barbosa, F., Jr. 2014. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. J. Toxicol. Environ. Health A 77: 69–79.
dc.relationDe Miguel, E., Clavijo, D., Ortega, M., and Gómez, A. 2014. Probabilistic meta-analysis of risk from the exposure to Hg in artisanal gold mining communities in Colombia. Chemosphere 108: 183–189.
dc.relationEstudio Nacional Del Agua. 2014. 2015. IDEAM. Instituto de Hidrología, Meteorología y Estudios Ambientales– IDEAM. http://documentacion.ideam.gov.co/openbiblio/ bvirtual/023080/ENA_2014.pdf
dc.relationFood and Agriculture Organization of the United Nations. 2006. Qué es el Codex Alimentarius. Secretaría del Programa Conjunto FAO/OMS sobre Normas Alimentarias Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia.
dc.relationGaleano, S. 2013. Acumulación de mercurio (Hg) en tejido muscular y hepático en especies ícticas de diferentes cíenagas del Magadalena medio. Tesis de Maestria en Ciencias Ambientales, Universidad de Antioquia, Antioquia, Colombia.
dc.relationHao, Y., Chen, L., Zhang, X., Zhang, D., Zhang, X., Yu, Y., and Fu, J. 2013. Trace elements in fish from Taihu Lake. China: Levels associated risks and trophic transfer. Ecotoxicol. Environ. Safety 2: 89–97.
dc.relationJayaprakash, M., Senthil Kumar, R., Giridharan, L., Sujitha, S. B., Sarkar, S.,K. and Jonathan, M. P. 2015. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Ecotoxicol. Environ. Safety 120: 243–255.
dc.relationKojadinovic, J., Potier, M., Le Corre, M., Cosson, R. P., and Bustamante, P. 2007. Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ. Pollut. 146: 548–566.
dc.relationLancheros, L. 2013. Content of mercury in muscle of some commercial fish species present in eight sampling sites from the Magdalena river basin (low, medium and high). Bogotá. Esp. Planeación ambiental y administración de los recursos. Universidad Militar Nueva Granada.
dc.relationMancera-Rodríguez, N. J., and Álvarez-León, R.2006. Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuícolas de Colombia. Acta Biol Col. 11: 3–23.
dc.relationNacano, L. R., De Freitas, R., and Barbosa, F., Jr. 2014. Evaluation of seasonal dietary exposure to arsenic, cadmium and lead in schoolchildren through the analysis of meals served by public schools of Ribeirão Preto, Brazil. J. Toxicol. Environ. Health A 77: 367–374.
dc.relationOlivero, J., and Solano, B. 1998. Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Sci. Total Environ. 217: 83–89.
dc.relationPack, E. C., Kim, C. H., Lee, S. H., Lim, C. H., Sung, D. G., Kim, M. H., and Kim, S. W. 2014. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming. J. Toxicol. Environ. Health A 77: 1477–1490.
dc.relationR Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org
dc.relationSharma, R. K., Agrawal, M., and Marshall, F. M., 2008. Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environ. Pollut. 154: 254–263.
dc.relationTassinari, C., and Diaz, J. 2008. Age and sources of gold mineralization in the Marmato mining district, NW Colombia: A Miocene–Pliocene epizonal gold deposit. Ore Geol .Rev. 33: 505–518.
dc.relationU.S. Environmental Protection Agency. 1991. Methods for the determination of metals in environmental samples. EPA-600/491-010. Cincinnati, OH: U.S. Environmental Protection Agency.
dc.relationVan Der Oos, R., Beyer, J., and Vermeulen, N. P. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 13: 57–149.
dc.relationWang, X., Sato,T., Xing, B., andTao, S. 2005. Healthriskofheavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total. Environ. 350: 28–37.
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia
dc.titleMetals and metalloid in eight fish species consumed by citizens of bogota d.c., colombia, and potential risk to humans
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos


Este ítem pertenece a la siguiente institución