dc.creator | Merchán Arenas, Diego R. | |
dc.creator | Muñoz Acevedo, Amner | |
dc.creator | Vargas Méndez, Leonor Y. | |
dc.creator | Kouznetsov, Vladimir V. | |
dc.date.accessioned | 2020-02-18T14:42:06Z | |
dc.date.accessioned | 2022-09-28T13:52:40Z | |
dc.date.available | 2020-02-18T14:42:06Z | |
dc.date.available | 2022-09-28T13:52:40Z | |
dc.date.created | 2020-02-18T14:42:06Z | |
dc.date.issued | 2011-10-17 | |
dc.identifier | http://hdl.handle.net/11634/21761 | |
dc.identifier | https://doi.org/10.3797/scipharm.1109-11 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3648316 | |
dc.description.abstract | The essential oil (EO) of clove bud dried fruits from Eugenia caryophyllus was
obtained by a conventional hydrodistillation process in an excellent yield
(11.7 %). Its chemical composition was analyzed by GC-MS, identifying eugenol
as a main constituent (60.5%). Four eugenol-like molecules, γ-diisoeugenol,
hydroxymethyleugenol, dihydroeugenol and 1,3-dioxanylphenol, were synthesized using eugenol or isoeugenol as initial precursors under green chemistry
protocols. To evaluate the possible antioxidant capacity of eugenol compounds
including the clove bud EO, the Trolox® Equivalent Antioxidant Capacity value,
obtained by the ABTS+• radical-cation discoloration method, was employed. The
methodology was performed in a UV-Vis reader of 96-well microplates (dilution
methodology), using well-known antioxidant agents (BHA, BHT and vitamin E)
as reference compounds. It was found that the prepared eugenol derivatives
had a more potent free radical scavenger activity than the reference
compounds. In particular, the most active molecules, γ-diisoeugenol and
1,3-dioxanylphenol, were ca. 3-fold more potent than vitamin E. | |
dc.relation | Barja G, Cadenas S, Rojas C, López-Torres M, Pérez-Campo R. A decrease of free radical production near critical targets as a cause of maximum longevity in animals Comp Biochem Physiol Biochem Mol Biol. 1994; 108: 501–512. http://www.ncbi.nlm.nih.gov/pubmed/7953069 | |
dc.relation | Park E.-Y, Hong Y-C, Lee K-H, Im M-W, Ha E, Kim Y, Ha M. Maternal exposure to environmental tobacco smoke, GSTM1/T1 polymorphisms and oxidative stress. Reprod Toxicol. 2008; 26: 197–202. http://dx.doi.org/10.1016/j.reprotox.2008.08.010 | |
dc.relation | Ji L. Oxidative stress during exercise: Implication of antioxidant nutrients. Free Rad Biol Med. 1995; 18: 1079–1086. http://dx.doi.org/10.1016/0891-5849(94)00212-3 | |
dc.relation | Radak Z, Chung H. Y, Koltai E, Taylor A. W, Goto S. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2008; 7: 34–42. http://dx.doi.org/10.1016/j.arr.2007.04.004 | |
dc.relation | Hartmann A, Niess A. Oxidative DNA damage in exercise. Handbook of Oxidants and Antioxidants in Exercise. 2000; 195–217. | |
dc.relation | Palli D, Sera F, Giovannelli L, Masala G, Bendinelli B, Caini S, Dolara P, Saieva C. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy. Environ Pollut. 2009; 157: 1521–1525. http://dx.doi.org/10.1016/j.envpol.2008.09.011 | |
dc.relation | Zinchuk V, Dorokhina L, Maltsev A. Prooxidant–antioxidant balance in rats under hypothermia combined with modified hemoglobin– oxygen affinity. J Therm Biol. 2002; 27: 345–352. http://dx.doi.org/10.1016/S0306-4565(01)00099-7 | |
dc.relation | Sakihama Y, Cohen M, Grace S, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002; 177: 67-80. doi:10.1016/S0300-483X(02)00196-8 | |
dc.relation | Indo H, Davidson M, Yen H, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima H. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007; 7: 106–118. http://dx.doi.org/10.1016/j.mito.2006.11.026 | |
dc.relation | Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther. 1992; 53: 127–166. http://dx.doi.org/10.1016/0163-7258(92)90047-4 | |
dc.relation | Rowe L, Degtyareva N, Doetsch P. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Rad Biol Med. 2008; 45: 1167–1177. http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.018 | |
dc.relation | Martínez-Cayuela M. Oxygen free radicals and human disease. Biochimie. 1995; 77: 147–161. http://dx.doi.org/10.1016/0300-9084(96)88119-3 | |
dc.relation | Gusdon A, Chen J, Mathews C. mt-Nd2c Increases Susceptibility to Type 1 Diabetes (T1D) by Increasing Mitochondrial Reactive Oxygen Species (ROS) Production. Mitochondrion, 2009; 9: 67–68. http://dx.doi.org/10.1016/j.mito.2008.12.024 | |
dc.relation | Abe J, Bradford C. Reactive Oxygen Species as Mediators of Signal Transduction in Cardiovascular Disease. Trends Cardiovas Med. 1998; 8: 59–64. http://dx.doi.org/10.1016/S1050-1738(97)00133-3 | |
dc.relation | Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updates. 2004; 7: 97–110. http://dx.doi.org/10.1016/j.drup.2004.01.004 | |
dc.relation | Migliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res. 2009; 674: 73–84. http://dx.doi.org/10.1016/j.mrgentox.2008.09.013 | |
dc.relation | Velez-Pardo C, Jimenez Del Rio M, Lopera F. Familial Alzheimer’s Disease: Oxidative Stress, β-amyloid, Presenilins, and Cell Death. General Pharm. 1998; 31: 675–681. http://dx.doi.org/10.1016/S0306-3623(98)00189-X | |
dc.relation | Bannister J. Autoxidation in Food and Biological Systems: edited by M G Sinic and M Karel. pp 659. Plenum Publishing Corp, New York. 1980. ISBN 0-306-40561. Biochem. Ed. 1982; 10: 43. | |
dc.relation | Lim Y, Lim T,Tee J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007: 103; 1003–1008. http://dx.doi.org/10.1016/j.foodchem.2006.08.038 | |
dc.relation | Zulueta A, Esteve M, Frasquet I, Frígola A. Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain. Food Chem. 2007; 103: 1365–1374. http://dx.doi.org/10.1016/j.foodchem.2006.10.052 | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | |
dc.title | Scavenger activity evaluation of the clove bud essential oil (Eugenia caryophyllus) and eugenol derivatives employing ABTS+• decolorization | |
dc.type | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | |