dc.contributorMéndez Leal, María Alexandra
dc.contributorRojas Reina, Christian José
dc.contributorhttps://orcid.org/0000-0003-4960-4211
dc.contributorhttps://orcid.org/0000-0002-1044-3329
dc.contributorhttp://scholar.google.com/citations?user=GiWWc18AAAAJ&hl=en
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001528488
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000089317
dc.creatorAlvarez Ruiz, Alejandro
dc.creatorNovoa Bermudez, José Mauricio
dc.date.accessioned2020-07-10T15:12:15Z
dc.date.available2020-07-10T15:12:15Z
dc.date.created2020-07-10T15:12:15Z
dc.date.issued2020-06-18
dc.identifierAlvarez, A., & Novoa, M. (2020). Determinación de la mutagenicidad de sustancias migradas desde recipientes plásticos de bajo costo comercializados en Villavicencio (Meta) mediante test Ames. Tesis de pregrado, Universidad Santo Tomás, Villavicencio.
dc.identifierhttp://hdl.handle.net/11634/27981
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe presence of mutagenic substances in the plastic materials used in everyday life, specifically in those intended for contact with food and beverages, may become a problem for public health and the environment, due to adverse effects on the human health mainly related to DNA damage, cardiovascular problems, fertility disorders, neurological disorders, among other diseases, as well as soil degradation, underground water sources and the alteration of environmental receptors such as microorganisms, plants and animals. Due to this problem, the present investigation evaluated the mutagenicity index of water in contact with low-cost plastic containers, used for transport, storage and heating, commercialized in the city of Villavicencio (Meta), in contrast with use and type of container. The Ames test was used as a method of identifying the mutagenicity index of the obtained samples. For the statistical treatment of the data, the Student's t-test and the analysis of variance ANOVA with the Tukey's HSD test were used. The Ames test was carried out with Salmonella typhimurium, following the protocol described by Ames et al. (1975) The test included positive and negative controls and was carried out without metabolic activation. All tests were applied in triplicate. The spontaneous reversion rates remained within normal values. Mutagenicity index ranged between 0.74 and 1.52, obtaining values labeled as "Non-mutagenic" or "Slightly mutagenic" according to the analysis scale. it can be inferred that mutagenicity index can be related to the normal wear to which these recipients are exposed, based on the relationship between the number of heating applied and the mutagenicity index obtained. Likewise, the influence of the physical characteristics of the container on the increase in the mutagenicity index was statistically verified, considering that containers made with polypropylene, transparent and labeled as BPA-free, are the most appropriate.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relationAmerican Society for Testing and Materials. (2013). Standard practice for coding plastic manufactured articles for resin identification
dc.relationAmes, B., Mccann, J., & Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutation Research, 31, 347–364. Retrieved from https://www.riksgalden.se/templates/RGK_Templates/Published/Published_Startpage____1307.aspx
dc.relationArvanitoyannis, I. S., & Bosnea, L. (2004). Migration of Substances from Food Packaging Materials to Foods. Critical Reviews in Food Science and Nutrition, 44(2), 63–76. https://doi.org/10.1080/10408690490424621
dc.relationAßmann, N., Emmrich, M., Kampf, G., & Kaiser, M. (1997). Genotoxic activity of important nitrobenzenes and nitroanilines in the Ames test and their structure-activity relationship. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 395(2–3), 139–144. https://doi.org/10.1016/S1383-5718(97)00158-7
dc.relationBach, C., Dauchy, X., Chagnon, M. C., & Etienne, S. (2012). Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water Research, 46(3), 571–583. https://doi.org/10.1016/j.watres.2011.11.062
dc.relationBach, C., Dauchy, X., Severin, I., Munoz, J. F., Etienne, S., & Chagnon, M. C. (2013). Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity. Food Chemistry, 139(1–4), 672–680. https://doi.org/10.1016/j.foodchem.2013.01.046
dc.relationBaldomero, M., Santos, D., Escudero, M., & Escudero, J. (2005). Tecnología: Programación didáctica y 15 unidades didácticas de 3o de ESO (Primera ed). Sevilla: Editorial MAD, S.L.
dc.relationBallesteros, A., Rubio, S., & Pérez, D. (2009). Analytical methods for the determination of bisphenol A in food. Journal of Chromatography A, 1216(3), 449–469. https://doi.org/10.1016/j.chroma.2008.06.037
dc.relationBarbosa, C., Muskus, C., Orozco, L., & Pabón, A. (2017). Efecto mutagénico y genotóxico , y expresión de los genes Rad51C , Xiap , P53 y Nrf2 inducidos por extractos antipalúdicos de plantas recolectadas en el Vaupés medio , Colombia. Biomédica, 37(3), 378–379.
dc.relationBarreto, M., Castillo, M., & Retamal, P. (2016). Salmonella enterica: una revisión de la trilogía agente, hospedero y ambiente, y su trascendencia en Chile. Infectología Al Día, 33(5), 547–557. Retrieved from www.sochinf.cl
dc.relationBeleño, R., Quijano, A., & Melendez, I. (2013). Actividad mutagénica y genotóxica del material particulado PM 2,5 en Cúcuta, Colombia. Revista MVZ Córdoba, 18, 3731–3737.
dc.relationCámara de Comercio de Villavicencio. (2017). Análisis de factores que afectan el desempeño económico del comercio en el centro de Villavicencio.
dc.relationChang, Y., Kang, K., Park, S. J., Choi, J. C., Kim, M. K., & Han, J. (2018). Experimental and theoretical study of polypropylene: Antioxidant migration with different food simulants and temperatures. Journal of Food Engineering (Vol. 244). Elsevier B.V. https://doi.org/10.1016/j.jfoodeng.2018.09.028
dc.relationChung, K. T., Kirkovsky, L., Kirkovsky, A., & Purcell, W. (1997). Review of mutagenicity of monocyclic aromatic amines: Quantitative structure-activity relationships. Mutation Research - Reviews in Mutation Research, 387, 1–16. https://doi.org/10.1016/S1383-5742(97)00019-7
dc.relationColombiana de salud S.A. (2004). Protocolo de Limpieza y Desinfección de material de vidrio de laboratorio clínico. Retrieved from http://www.colombianadesalud.org.co/LABORATORIO_CLINICO/POES PROTOCOLOPO DE LIMPIEZA Y DESINFECCION DE MATERIAL DE VIDRIO.pdf
dc.relationConcejo Municipal de Villavicencio. Acuerdo 287 de 2015 (2015).
dc.relationCooper, J. E., Kendig, E. L., & Belcher, S. M. (2011). Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere, 85(6), 943–947. https://doi.org/10.1016/j.chemosphere.2011.06.060
dc.relationDalgleish, T., Williams, J. M. G. ., Golden, A.-M. J., Perkins, N., Barrett, L. F., Barnard, P. J., … Watkins, E. (2008). Plastic packaging. Interactions with food and pharmaceuticals. (O. Piringer & A. Baner, Eds.), Journal of Experimental Psychology: General (2nd ed., Vol. 136). WILEY-VCH.
dc.relationDe Mendiburu, F. (2016). Agricolae: Statistical Procedures for Agricultural Research (version 1.2-4).
dc.relationDuck Soo, L., Seung Jun, K., Kyu Bong, K., Hyung Sik, K., & Byung Mu, L. (2009). Potential risk of bisphenol a migration from polycarbonate containers after heating, boiling, and microwaving. Journal of Toxicology and Environmental Health - Part A: Current Issues, 72(21–22), 1285–1291. https://doi.org/10.1080/15287390903212329
dc.relationEnríquez, A. (2017). Identificación de los factores explicativos de la presencia de los disruptores endocrinos en el agua embotellada en Bogotá.
dc.relationErler, C., & Novak, J. (2010). Bisphenol a exposure: Human risk and health policy. Journal of Pediatric Nursing, 25(5), 400–407. https://doi.org/10.1016/j.pedn.2009.05.006
dc.relationEscuela Colombiana de Ingeniería. (2007). Plásticos: Curso de Procesos de Manufactura.
dc.relationEuropean Chemical Agency (ECHA). (2018). Bisfenol A. Retrieved October 27, 2018, from https://echa.europa.eu/es/hot-topics/bisphenol-a
dc.relationFasano, E., Bono-Blay, F., Cirillo, T., Montuori, P., & Lacorte, S. (2012). Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control, 27(1), 132–138. https://doi.org/10.1016/j.foodcont.2012.03.005
dc.relationGallardo, A., & Mallo, P. (1864). Revista médico-quirúrgica. Higiene, 1(17), 293–312.
dc.relationGarcía, M., Cipa, M., Rodríguez, R., Rivas, A., Olea, F., Vílchez, J., & Zafra, A. (2017). Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid-liquid extraction and clean-up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis. Talanta, 178, 441–448. https://doi.org/10.1016/j.talanta.2017.09.067
dc.relationGómez, C., Mejía, G., Segura, Á., Arango, C., Hernández, S., Patiño, D., & Barraza, A. (2018). Exposición a Bisfenol A (BPA) en mujeres embarazadas y su relación con la obesidad en sus hijos: revisión sistemática. Revista Facultad Nacional de Salud Pública, 36(1), 66–74. https://doi.org/10.17533/udea.rfnsp.v36n1a08
dc.relationGonzález, S., Gaspar, J., Calle, E., Pereira, S., Mariano, A., Rueff, J., & Casado, J. (2004). Stereochemical effects in the metabolic activation of nitrosopiperidines: Correlations with genotoxicity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 558(1–2), 45–51. https://doi.org/10.1016/j.mrgentox.2003.10.020
dc.relationGuan, Y., Wang, X., Wong, M., Sun, G., An, T., Guo, J., & Zhang, G. (2017). Evaluation of genotoxic and mutagenic activity of organic extracts from drinking water sources. PLOS ONE, 12, 1–15. https://doi.org/10.1371/journal.pone.0170454
dc.relationHiramoto, K., Hiromi, N., Kato, T., & Kikugawa, K. (1995). Thiamine is a precursos of DNA strand breakage and mutagenic substance(s) when mixed with nitrite. Jpn. J. Toxicol. Environ. Health, 6, 447–451. https://doi.org/10.1248/cpb.37.3229
dc.relationHotchkiss, J. H. (1988). An overview of food and food packaging interactions. In Food and Packaging Interactions (pp. 1–10). Stocking Hall. https://doi.org/10.1021/bk-1988-0365.ch001
dc.relationKier, L. D., Yamasaki, E., & Ames, B. N. (1974). Detection of mutagenic activity in cigarette smoke condensates. Proceedings of the National Academy of Sciences of the United States of America, 71(10), 4159–4163. https://doi.org/10.1073/pnas.71.10.4159
dc.relationKremenchutzky, E., & Vásquez, A. (2015). Guía de Genética Mutaciones. Retrieved from http://alevazquez.com.ar/archivos/pdfs/G15_01.pdf
dc.relationLara, A., & García, J. (1998). Diseño Estadístico de Experimentos: análisis de la varianza.
dc.relationLopez, M., Granada, A., Araque, P., Molina, J., Puertollano, M., Rivas, A., … Olea, N. (2007). Oestrogenicity of paper and cardboard extracts used as food containers. Food Additives and Contaminants, 24(1), 95–102. https://doi.org/10.1080/02652030600936375
dc.relationMansilha, C., Silva, P., Rocha, S., Gameiro, P., Domingues, V., Pinho, C., & Ferreira, I. M. P. L. V. O. (2013). Bisphenol A migration from plastic materials: Direct insight of ecotoxicity in Daphnia magna. Environmental Science and Pollution Research, 20(9), 6007–6018. https://doi.org/10.1007/s11356-013-1614-0
dc.relationMelendez, I., Martínez, M., & Quijano, A. (2012). Actividad mutagénica y genotóxica en el material particulado fracción respirable MP 2,5 en Pamplona, Norte de Santander, Colombia. Iatreia, 25.
dc.relationMelendez, I., Quintero, G., & Quijano, A. (2016). Mutagenicidad y genotoxicidad en fracciones de PM 2,5 del aire de Villa del Rosario, Colombia. Actualidades Biológicas, 38(105), 191–196. https://doi.org/10.17533/udea.acbi.v38n105a06
dc.relationMinisterio de Salud y Protección Social. Resolución 4143 de 2012, Diario oficial § (2012). Colombia. Retrieved from https://www.invima.gov.co/images/pdf/normatividad/alimentos/resoluciones/resoluciones/2012/4143.PDF
dc.relationMinisterio de Salud y Protección Social. Resolución 683 de 2012, Diario oficial § (2012). Colombia. Retrieved from https://www.invima.gov.co/images/pdf/normatividad/alimentos/resoluciones/resoluciones/2012/2RESOLUCION_683_DE_2012_reglamento_general_envases.pdf
dc.relationMonneret, C. (2017). What is an endocrine disruptor? Comptes Rendus - Biologies, 340(9–10), 403–405. https://doi.org/10.1016/j.crvi.2017.07.004
dc.relationMontes, D., & Olivero, J. (2013). Computer-aided identification of novel protein targets of bisphenol A. Toxicology Letters, 222(3), 312–320. https://doi.org/10.1016/j.toxlet.2013.08.010
dc.relationMortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 455(1–2), 29–60. https://doi.org/10.1016/S0027-5107(00)00064-6
dc.relationMuncke, J., Backhaus, T., Geueke, B., Maffini, M. V., Martin, O. V., Myers, J. P., … Scheringer, M. (2017). Scientific challenges in the risk assessment of food contact materials. Environmental Health Perspectives, 125(9), 1–9. https://doi.org/10.1289/EHP644
dc.relationMuncke, Jane. (2011). Endocrine disrupting chemicals and other substances of concern in food contact materials: An updated review of exposure, effect and risk assessment. Journal of Steroid Biochemistry and Molecular Biology, 127, 118–127. https://doi.org/10.1016/j.jsbmb.2010.10.004
dc.relationMuñoz, J., & Santos, A. (2019). VALORACIÓN ECONÓMICA DE LA DISPOSICIÓN A PAGAR (DAP) PARA CONTROLAR LA VENTA DE PORTACOMIDAS ASOCIADOS.
dc.relationNavarro, J., Bonilla, A., Trujillo, A., & Upegui, L. (2006). Evaluación del potencial genotóxico de fitoproductos autóctonos activos contra Leishmania y Trypanosoma mediante el test de ames y el ensayo cometa, 28(85), 139–153.
dc.relationNepalia, A., Singh, A., Mathur, N., Kamath, R., & Pareek, S. (2018). Assessment of mutagenicity caused by popular baby foods and baby plastic-ware products: An imperative study using microbial bioassays and migration analysis. Ecotoxicology and Environmental Safety, 162(July), 391–399. https://doi.org/10.1016/j.ecoenv.2018.07.002
dc.relationOcampo, Y., Caro, D., Rivera, D., & Franco, L. (2017). Safety of sucrose esters from Physalis peruviana L. in a 28-day repeated-dose study in mice. Biomedicine and Pharmacotherapy, 90, 850–862. https://doi.org/10.1016/j.biopha.2017.04.046
dc.relationOkunola, A., Adewale, S., & Yetunde, A. (2019). In vitro mutagenicity and genotoxicity of raw and simulated leachate from plastic waste dumpsite. Toxicology Mechanisms and Methods, 15, 1–8. https://doi.org/10.1080/15376516.2019.1566426
dc.relationOmran, G., Gaber, H., Mostafa, N., Abdel, R., & Salah, E. (2018). Potential hazards of bisphenol A exposure to semen quality and sperm DNA integrity among infertile men. Reproductive Toxicology, 81, 188–195. https://doi.org/10.1016/j.reprotox.2018.08.010
dc.relationOrganización Mundial de la Salud (OMS). (1985). Environmental health. Criteria 51.
dc.relationPabón, A., Blair, S., Carmona, J., Zuleta, M., & Saez, J. (2003). Evaluation of the mutagenicity of antimalarial products isolated from Solanum nudum (Solanaceae). Pharmazie, 58(4), 263–267.
dc.relationPabón, A., Lopera, T., Carmona, J., & Blair, S. (2001). Evaluation of mutagenic activity of several antimalarial extracts from Eupatorium inulaefolium. Pharmazie, 56(5), 412–414.
dc.relationPajaro, N., Caballero, K., & Olivero, J. (2014). Identification of volatile organic compounds (VOCs) in plastic products using gas chromatography and mass spectometry (GC/MS). Ambiente & Água, 9(4), 610–620. https://doi.org/10.4136/1980-993X
dc.relationPawar, P., Shirgaonkar, S., & Patil, R. (2016). Plastic marine debris : Sources , distribution and impacts on coastal and ocean biodiversity. PENCIL Publication of Biological Sciences, 3(February), 40–54.
dc.relationPlastics Europe. (2018). Plastics the Facts: An analysis of European plastics production, demand and waste data.
dc.relationQuijano, A., Castillo, C., & Melendez, I. (2015). Potencial Mutagénico Y Genotóxico De Aguas Residuales De La Curtiembre Tasajero En La Ciudad De Cúcuta, Norte De Santander, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 18(1), 13–20. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262015000100003&lang=pt
dc.relationRomana, V. (1993). Evaluacion De La Mutagenicidad Inducida Por Concentrados Organicos Derivados De Aguas De Consumo Publico Por Medio Del Test De Ames.
dc.relationSandoval, A. M. (2007). Ensayo de mutagenicidad con la bacteria Salmonella typhimurim . Prueba de Ames. Instituto Nacional de Ecología, 319–344.
dc.relationSelukar, N., Lande, C., & Ingole, C. (2014). Waste Thermocol to Adhesive for Better Environment. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 1(6), 98–101.
dc.relationSierra, C., Cajas, N., Hoyos, L., Zuleta, M., Whorton, E., & Au, W. (1998). In vitro and in vivo genotoxic activity of miral, an organophosphorus insecticide used in Colombia. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 415(1–2), 59–67. https://doi.org/10.1016/S1383-5718(98)00054-0
dc.relationSuhrhoff, T., & Scholz, B. (2015). Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab experiment. Marine Pollution Bulletin, 102(1), 84–94. https://doi.org/10.1016/j.marpolbul.2015.11.054
dc.relationSundar, R., Jain, M. R., & Valani, D. (2018). Mutagenicity Testing. Mutagenicity: Assays and Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809252-1.00010-9
dc.relationTrossero, C., Caffarena, G., Hure, E., & Rizzotto, M. (2006). Detección de mutagenicidad en compuestos N-nitroso con el Test de Ames. Acta Farmaceutica Bonaerense, 25(1), 139–144.
dc.relationUS Food and Drug Administration. (2012). Code of federal regulation. US Government Printing Office, 1–806. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Title+21+Food+and+Drugs#0%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Title+21:+Food+and+Drugs#0
dc.relationVandenberg, L., Luthi, D., & Quinerly, A. (2015). Plastic bodies in a plastic world: multi-disciplinary approaches to study endocrine disrupting chemicals. Journal of Cleaner Production, 140, 373–385. https://doi.org/10.1016/j.jclepro.2015.01.071
dc.relationVandenberg, L. N. (2014). Hazards of Food Contact Material: Bisphenol A and Endocrine Disruption. Encyclopedia of Food Safety (Vol. 2). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-378612-8.00428-5
dc.relationVandenberg, Laura N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007). Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2), 139–177. https://doi.org/10.1016/j.reprotox.2007.07.010
dc.relationVivas, A. H., Arboleda, M. A., Sánchez, R., Benitez, N., Bravo, E., Soto, A., … Larmat, F. (2015). Evaluación de la mutagenicidad causada por metales pesados presentes en agua del río Cauca en la ciudad de Cali, Colombia. Revista Colombiana de Química, 43(2), 18–24. https://doi.org/10.15446/rev.colomb.quim.v43n2.53119
dc.relationWatson, J., Gann, A., Baker, T., Levine, M., Bell, S., Losick, R., & Harrison, S. (2014). Molecular Biology of The Gene (7th editio). New York: Pearson. https://doi.org/10.2142/biophys.17.240
dc.relationWolstenholme, J. T., Goldsby, J. A., & Rissman, E. F. (2013). Transgenerational effects of prenatal bisphenol A on social recognition. Hormones and Behavior, 64(5), 833–839. https://doi.org/10.1016/j.yhbeh.2013.09.007
dc.relationXue, C., & Shu, J. (2013). Migration study of bisphenol A from tea bottle of polycarbonate plastic to tea water. Advanced Materials Research, 821–822, 929–932. https://doi.org/10.4028/www.scientific.net/AMR.821-822.929
dc.relationZuluaga, M., Valencia, A., & Ortíz, I. (2009). Efecto genotóxico y mutagénico de contaminantes atmosféricos. Medicina UPB, 28(1), 33–41.
dc.rightshttp://creativecommons.org/licenses/by-nc/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial 2.5 Colombia
dc.rightsAtribución-NoComercial 2.5 Colombia
dc.titleDeterminación de la mutagenicidad de sustancias migradas desde recipientes plásticos de bajo costo comercializados en Villavicencio (Meta) mediante test Ames


Este ítem pertenece a la siguiente institución