dc.contributorLugo-Vargas, Ligia
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000618918
dc.creatorBarrera-Cárdenas, Fredy Ariel
dc.date.accessioned2020-06-02T11:56:57Z
dc.date.available2020-06-02T11:56:57Z
dc.date.created2020-06-02T11:56:57Z
dc.date.issued2020-06-01
dc.identifierBarrera-Cárdenas, F.A. (2020). Interpretación de la estructura Geológica y la Tendencia Paleoambiental durante el Eoceno-Pleistoceno de la Subcuenca del Río Teusacá, Cundinamarca. [Tesis de Maestría, Universidad Santo Tomás] Colombia
dc.identifierhttp://hdl.handle.net/11634/23592
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe objective of this work was related to make an interpretation of the geological structure and the paleoenvironmental tendency during the Eocene to the Pleistocene sub-basin of the Teusacá River, Cundinamarca. Observations were made directly on the rocks, heading and dive data were taken. To find the stress-strain pattern, the graphic method of Anderson (1951) was used. For the design of the Paleoclimatic and Paleoenvironmental Curve, the Simplex model was used and the work carried out by Adriessen et al. (1993), IGAC (2000) and Harland et al. (1989) was used as a reference. During the Andean Orogeny, the regional main tension σ1 was East-West (80% persistence) and the cut-off voltage σ2 was South-North. The shortening calculated for the elevation of 2800 meters of the Eastern Cordillera in the study area was 28.000 meters. During the final phase of adjustment, structures such as the Bogotá fault, the Teusacá fault, the Pericos fault, the San Lorenzo fault and the Santa Elena fault, with a South-North trend, became dominant for the main regional effort. The uprising of the Cordillera apparently stopped during the Andean Orogeny. The Teusacá River Sub-basin presented two stages in its development: the Andean Orogeny (3My) and the Final Adjustment Phase (1Ma). During the Andean Orogeny, the study area was exposed from sea level, where the dense palynology data of the Mauritia forest was recovered, to its current position of 2800 masl according to Adriessen et al. (1993), IGAC (2000) and Harland et al. (1989). In the Final Adjustment Phase (1Ma), the basin begins with the Glacial Periodicity, the lower level of the Ice layer was 2600 meters above sea level, 36000 years ago during the Winsconsinian period. The structural shape of the Teusacá River Basin could be defined as a Horst Structure Strike on the edge of the Teusacá synclinary, with a South-North trend. In addition, the detachment of the embedded fan failure system becomes the upper part of the hard formation (last upper cretaceous deposits). The only place where it is possible to measure fractures and stratigraphic planes in the area is hard formation (Lower Guadalupe Group), the upper stratigraphic units disintegrated or were subjected to tension. The paleoclimatic curve shows the behavior of the glaciations, their peaks and lower limits of the last 2.2 Ma. The results obtained allowed us to know a model of the geological evolution of the sub-basin of the Teusacá River and understand the paleoenvironmental evolution of the region during the Last cycles in the study area.
dc.relationAdriessen, P., Helmens, K., Hooghiemstra, H., Riezebos, P., Van der Hammen, T. (1993). Absolute chronology of the Pliocene-Quaternary sediment sequence of the Bogotá area Colombia. Quaternary Science Reviews 12 (7): 483-501.
dc.relationAnderson, E.M. (1951). The Dinamics of Faulting, 2nd ed., Edinburgh, Oliver and Boyd, pp. 206.
dc.relationBarrera-Cárdenas, F.A., Serrano, B., Kammer, A. (2006). Análisis de Paleoesfuerzos en una sección del grupo Quetame de la Cordillera Oriental Colombiana. Revista de Investigación, 6 (1): 17-27.
dc.relationBogotá-Angel, R.G., Groot, M.H.M, Hooghiemstra, H., Lourens L.J., Van der Linden, M., Berrio, J.C. (2011). Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews, 30: 3321-3337.
dc.relationBongiorno, F., Ucar, R. Belandria, N. (2011). Determinación de la dirección de los esfuerzos principales a través de análisis numérico y proyecciones estereográficas de la falla de Boconó en el sector Yacambú Estado Lara. Revista Ciencia e Ingeniería, 32(2): 57-66.
dc.relationBotero, PJ. (1973) Soils of Guasca-Guatavita, Colombia. IGAC-International Institute for Aerial Survey and Earth Sciences Netherlands.
dc.relationBrooke, A., Kendrick, D., Meeraus, A., Raman, R. (1998). GAMS: A User Guide. GAMS Development Corporation. Washington, DC, USA. 262pp.
dc.relationCardozo, N., Allmendinger, R.W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51: 193 – 205. doi:10.1016/j.cageo.2012.07.021.
dc.relationCastaño-Fernández, S. (1987). Concepto y desarrollo histórico de la Geología. Ens. Rev. Facu. Educ. Albacete, 1: 197–208.
dc.relationDantzig, G.B. (1963). Linear Programming and Extensions. Santa Monica, CA: RAND Corporation. Available in: https://www.rand.org/pubs/reports/R366.html.
dc.relationDuque-Caro, H. (1990). Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palae 77: 203–234.
dc.relationFernández-López, S. (1988). Bioestratigrafía y biocronología: su desarrollo histórico. En: Curso de conferencias sobre historia de la paleontología. Real Academia de Ciencias Exactas, Físicas y Naturales. Col. Historia de la Ciencia: 185-215.
dc.relationForero-Suarez, A. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in northwestern South America. Journal of South American Earth Sciences, 3(2-3): 141-151.
dc.relationGómez, J., Nivia, Á, Montes, N.E., Almanza, M.F., Alcárcel, F.A., Madrid, C.A. (2015). Notas explicativas: Mapa Geológico de Colombia. En: Gómez, J. & Almanza, M.F. (Editores), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33, p. 9-33. Bogotá.
dc.relationGoosse, H., Barriat, P.Y., Lefebvre, W., Loutre, M.F., Zunz, V. (2010). Introduction to climate dynamics and climate modeling. Online textbook available at http://www.climate.be/textbook.
dc.relationGraveolis, T., Ploskas, N., Samaras, N. (2013). Combining Interior and Exterior Simplex Type Algorithms. Conference: 17th Panhellenic Conference in Informatics (PCI’13), 19–21 September, At Thessaloniki, Greece. Available in: https://www.researchgate.net/publication/304744716_Combining_interior_and_exterior_simplex_type_algorithms
dc.relationGuerrero, J., Sarmiento, G. (1996). Estratigrafía Física, Palinológica, Sedimentológica y Secuencial del Cretácico Superior y Paleoceno del Piedemonte Llanero. Implicaciones en Exploración Petrolera. Geología Colombiana, 20: 3-66.
dc.relationHarland, B., Armstrong, R., Cox, A., Craig, L., Smith, A., Smith, D. (1989). A geologic time scale 1989. Cambridge: Cambridge University Press.
dc.relationHelmens, K., Van der Hammen, T. (1994). The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of Tectonic uplift, basin development and Climatic change. Quaternary International 21: 41-61.
dc.relationHelmens, K., Van Der Hammen, T. (1995). Memoria explicativa para los mapas del Neogeno-Cuaternario de la Sabana de Bogotá-Cuenca Alta del Río Bogotá. (Cordillera Oriental, Colombia). En: Análisis Geográficos No. 24: 91-142.
dc.relationHerzberg, C., Condie, K., Korenaga, J. (2010). Thermal History of the Earth and Its Petrological Expression. Earth Planet. Sci. Lett., 292: 79-88.
dc.relationHooghiemstra, H., Ran, T.H.E. (1994). Late Pliocene-Pleistocene high resolution pollen sequence of Colombia: An overview of climatic change. Quaternary International 21: 63-80.
dc.relationIGAC. (2000). Estudio General de Suelos y Zonificación de Tierras del Departamento de Cundinamarca: Mapas Temáticos.
dc.relationJulivert, M. (1963). Los rasgos tectónicos de la región de la Sabana de Bogotá y los mecanismos de formación de las estructuras. Boletín de Geología, 13-14: 5-104. Bucaramanga.
dc.relationKellogg, J.N., Vega, V. (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: constraints from global positioning system geodetic studies and gravity. Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America.
dc.relationLoaiza, J., Sánchez-Espinoza, J., & Rubiano, Y. (2017). Late pleistocene polygenetic Andean wetland soils. GeoResJ 14: 20-35.
dc.relationMADS. (2014). Guía Técnica para la Formulación de Planes de Ordenamiento y Manejo de Cuencas Hidrográficas POMCAS. Ministerio de Ambiente y Desarrollo Sostenible. Bogotá D.E., Colombia. 104 pp.
dc.relationMaya, M. 2001. Distribución, facies y edad de las rocas metamórficas de Colombia. INGEOMINAS, 54pp.
dc.relationNikishin, A. M. (2011). The Geological History and Geodynamics of the Earth. Moscow University Geology Bulletin, 66 (4): 225-241.
dc.relationPelayo, F. (1996). Teorías de la Tierra y Sistemas Geológicos: un largo debate en la historia de la Geología. Asclepio, 48(2): 21-52.
dc.relationPérez-Malváez, C., Bueno-Hernández, A., Feria M., Ruíz R. (2006). Noventa y cuatro años de la Teoría de la Deriva Continental de Alfred Lothar Wegener. Interciencia, 31(7): 536-543.
dc.relationScholz, C. (2007). Fault Mechanics. 441-483 p. In Treatise on Geophysics. 1st Edition, Gerald Schubert Editor. Elsevier Science. Available in: https://www.researchgate.net/publication/224962637_610_Fault_Mechanics
dc.relationStruth, L., Babault, J., Teixell A. (2015). Drainage reorganization during mountain building in the river system of the Eastern Cordillera of the Colombian Andes. Geomorphology 250: 370–383.
dc.relationTaboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., Rivera, C. (2000). Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics 19, 787–813.
dc.relationUyeda, S., Kanamori, H. (1979). Back-Arc Opening and the Mode of Subduction. Journal of Geophysical Research, 84(B3):1049-1061.
dc.relationVan der Hammen, T., Werner, J., & Van Dommelen, H. (1973). Palynological record of the upheaval Northern Andes: A study of the pliocene and lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high Andean biota. Review of Palaeobotany and Palynology 16 (1-2) 1-42, 47-81, 84-122.
dc.relationVan Geel, B., Van der Hammen, T. (1973). Upper quaternary vegetational and climatic sequence of the Fuquene area (Eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 14 (1): 9-55, 73-92.
dc.relationWard, P.D. (2006). Impact from the Deep. Scientific American (October 2006): 65-71.
dc.relationZachos J.C., Dickens, G.R., Zeebe, R.E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279-283.
dc.relationZalasiewicz, J., Williams, M. (2015). Climate Change through Earth's History. Chapter 1, 3-17p. In: Climate Change (Second edition), Elsevier B.V.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleInterpretación de la Estructura Geológica y la Tendencia Paleoambiental durante el Eoceno-Pleistoceno de la Subcuenca del Río Teusacá, Cundinamarca.


Este ítem pertenece a la siguiente institución