dc.contributorCerón, Alexandra
dc.contributorCervantes Díaz, Martha
dc.creatorQuintero, Claudia Sofía
dc.date.accessioned2020-02-07T22:29:03Z
dc.date.available2020-02-07T22:29:03Z
dc.date.created2020-02-07T22:29:03Z
dc.date.issued2020-02-05
dc.identifierQuintero Duque. C. S (2020) Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tóxico sobre el Allium Cepa [Tesis de maestría] Universidad Santo Tomás. Bucaramanga,Colombia.
dc.identifierhttp://hdl.handle.net/11634/21502
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractAt the end of XX century, scientists have been worried about increase of acetaminophen (ACE)consumption, that increase its concentration and toxic effects, due to concentration in sewage and rivers, springs. Aditionally, its frequency of disposal in urine and stool make to acetaminophen increase its presence in sewage of waste wáter treatment plants whose desing is based on organic matter remotion and solids, otherwise microorganisms and other nutrients in low grade, This investigation takes into account two stages: First, to be know (ACE) concentration, its relevant results are related to new knowledge, because PTAR UPB just only treatment system build in academyc institution in Floridablanca-Santader. Aditionally, final effluent is pourted in a Menzuly spring, for that reason to know is very important to know ecotoxicological influence. The methodology based on High Performance Liquid Chromatography was used for the characterization of acetaminophen showed a precision with coefficient of variation between 0.3% -10%, recovery percentages between 92% -101%, detection limit of 20 ng /, the deviations between the low obtained values could be related to the influence of the matrix and pretreatment of the sample. The results showed acetaminophen concentrations between 460 ng / L and 80 ng / L in the tributary and effluent respectively. In the case of Reactor sludge, 5.2 mg / kg and Drying Beds of 3.4 mg / kg were obtained. The removal obtained in the plant by degradation varied between 88% and 91%, per 12% sore and 34.7% remain in the final effluent. Thus, drug removal processes are favored in the liquid phase and the solid phase adsorption phenomenon. The ecotoxicological evaluation of acetaminophen (Allium cepa method) threw values in the pure standard (45.34 ppm) and tablet (139.5 ppm), this indicates that the content of acetaminophen in the Effluent is not potentially toxic.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ciencias y Tecnologías Ambientales
dc.publisherFacultad de Química Ambiental
dc.relationAcevedo-Barrios, R. L., Severiche-Sierra, C. A., & Jaimes Morales, J. D. C. (2017). Efectos tóxicos del paracetamol en la salud humana y el ambiente. Revista de Investigación Agraria y Ambiental, 8(1), 139–149. https://doi.org/10.22490/21456453.1845
dc.relationAmaro, Rosa; Gómez, Luis; Vita, R. A. M. 2013. (2008). Guía de metodos cromatográficos (1st ed.; U. C. de Venezuela, Ed.). Retrieved from http://www.ciens.ucv.ve:8080/generador/sites/LIApregrado/archivos/Guia para cromatografia.pdf
dc.relationAminoshariae, A., & Khan, A. (2015, May 1). Acetaminophen: Old Drug, New Issues. Journal of Endodontics, Vol. 41, pp. 588–593. https://doi.org/10.1016/j.joen.2015.01.024
dc.relationArias Villamizar, Carmen Alicia;Escudero de Fonseca, A. (2011). Estudio preliminar de la presencia de compuestos emergentes en las aguas residuales del Hospital Universidad del Norte. In I. 978-607-607-015-4 (Ed.), IV Simposio iberoamericano de gestion y tratamiento de residuos (pp. 275–280). Mexico: Red iberoamericana en gestion y aprovechamiento de residuos.
dc.relationArikan, O. A., Rice, C., & Codling, E. (2008). Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination, 226(1–3), 121–133. https://doi.org/10.1016/j.desal.2007.01.238
dc.relationBahnick, D. A., & Markee, T. P. (1985). Occurrence and Transport of Organic Microcontaminants in the Duluth-Superior Harbor. Journal of Great Lakes Research, 11(2), 143–155. https://doi.org/10.1016/S0380-1330(85)71753-4
dc.relationBai, Y., Meng, W., Xu, J., Zhang, Y., & Guo, C. (2014). Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environmental Science: Processes & Impacts, 16(3), 586. https://doi.org/10.1039/c3em00567d
dc.relationBeale, D. J. (2017). Mislabeling of Study Design and Overstatement of Findings in “rechallenging Statin Therapy in Veterans with Statin-Induced Myopathy Post Vitamin D Replenishment.” Journal of Pharmacy Practice, 30(3), 385. https://doi.org/10.1177/0897190017699760
dc.relationBennin, F., & Rother, H.-A. (2015). “But it’s just paracetamol”: Caregivers’ ability to administer over-the-counter painkillers to children with the information provided. Patient Education and Counseling, 98(3), 331–337. https://doi.org/10.1016/J.PEC.2014.11.025
dc.relationBhat, S. A., Singh, J., Singh, K., & Vig, A. P. (2018). Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review. Agriculture and Natural Resources, 51(5), 325–337. https://doi.org/10.1016/j.anres.2017.11.002
dc.relationBotero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., … Hernández, F. (2018). ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.’ Science of the Total Environment, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088
dc.relationBrouwer, E. ., Kofman, S., & Brinkman, U. A. T. (1995). Selected procedures for the monitoring of polar pesticides and related microcontaminants in aquatic samples. Journal of Chromatography A, 703(1–2), 167–190. https://doi.org/10.1016/0021-9673(94)01237-9
dc.relationCarballa, M., Omil, F., Lema, J. M., Llompart, M., García-Jares, C., Rodríguez, I., … Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918–2926. https://doi.org/10.1016/j.watres.2004.03.029
dc.relationCastro-Suarez, J. R., Pájaro-Payares, A. A., Espinosa-Fuentes, E., & Meza-Fuentes, E. (2017). Vibrational detection of acetaminophen in commercials tablets by ATR-FTIR spectroscopy and Chemometrics. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2017-July(July), 19–21. https://doi.org/10.18687/LACCEI2017.1.1.319
dc.relationCeron, Alexandra; Quintero, Claudia Sofía; León, M. (2017). Ocurrencia y destino de contaminantes farmacéuticos en una planta de tratamiento de aguas residuales institucionales. Bucaramanga.
dc.relationColombia., M. de A. y D. S. de. Resolución_631_de_2015_vertimientos. , Pub. L. No. 0631–2015, 1 (2015).
dc.relationCorrêa Martins, M. N., Souza, V. V. de, & Silva Souza, T. da. (2016). Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere, 148, 481–486. https://doi.org/10.1016/j.chemosphere.2016.01.071
dc.relationDaniela Morais Leme, M. A. M.-M. (2009). Allium cepa test in environmental monitoring: A review on its applicationNo Title. Mutation Research - Reviews in Mutation Research, 682, 71–81. Retrieved from www.elsevier.com/locate/reviewsmr
dc.relationDaughton, C. G. (2016). Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. Science of the Total Environment, 562, 391–426. https://doi.org/10.1016/j.scitotenv.2016.03.109
dc.relationDe la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–1957. https://doi.org/10.1016/J.WATRES.2012.01.014
dc.relationDesbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., & Laffont-Schwob, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Science of the Total Environment, 639, 1334–1348. https://doi.org/10.1016/j.scitotenv.2018.04.351
dc.relationDevelopments in Surface Contamination and Cleaning. (2013). In Developments in Surface Contamination and Cleaning. https://doi.org/10.1016/B978-1-4377-7879-3.00001-7
dc.relationDíaz, M., Sacristán, M., & Borja, C. (2011). Curso de cromatografía de líquidos de alta resolución (HPLC): Prácticas de laboratorio y cuestiones teórico-prácticas. Parte II. Práctica de laboratorio: análisis cuantitativo básico. Reduca (Biología, 4(3), 33–47. Retrieved from http://revistareduca.es/index.php/biologia/article/viewFile/842/857
dc.relationE.Clesceri, L. E. A. et A. (2015). Standard Methods of water and wastewater 23th edition. Ekpeghere, K. I., Lee, J.-W., Kim, H.-Y., Shin, S.-K., & Oh, J.-E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077
dc.relationFatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.06.082
dc.relationFent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009 Flores, J. R., Salcedo, A. M. C., & Fernández, L. M. (2011). Rapid HPLC Method for Monitoring Relevant Residues of Pharmaceuticals Products in Environmental Samples. American Journal of Analytical Chemistry, 02(01), 18–26. https://doi.org/10.4236/ajac.2011.21003
dc.relationGolar, S. K. (2011). Use and understanding of analgesics (painkillers) by Aston university students. Bioscience Horizons, 4(1), 71–78. https://doi.org/10.1093/biohorizons/hzr009
dc.relationGorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. T. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.04.060
dc.relationHalling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Liitzhofl, H. C. H., & Jorgensen, S. E. (1998). Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment-A Review. In Chemosphere (Vol. 36).
dc.relationInforme final IEEE proyecto emergentes upb. (n.d.).
dc.relationJean, J., Perrodin, Y., Pivot, C., Trepo, D., Perraud, M., Droguet, J., … Locher, F. (2012). Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. Journal of Environmental Management, 103, 113–121. https://doi.org/10.1016/j.jenvman.2012.03.005
dc.relationJos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., Del Peso, A., … Cameán, A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17(5–6), 525–532. https://doi.org/10.1016/S0887-2333(03)00119-X
dc.relationKatsoyiannis., N. R. A. C. ;Arminda A. c; A. (2012). Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. Journal of Hazardous Materials, 1(Hazardous materials), 239–240. Retrieved from https://doi.org/10.1016/j.jhazmat.2012.05.040
dc.relationKirkland, D. (1998). Chromosome aberration testing in genetic toxicology - Past, present and future. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 404(1–2), 173–185. https://doi.org/10.1016/S0027-5107(98)00111-0
dc.relationKrzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., … Fatta-Kassinos, D. (2019a). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.08.130
dc.relationLai, W. W. P., Lin, Y. C., Tung, H. H., Lo, S. L., & Lin, A. Y. C. (2016). Occurrence of pharmaceuticals and perfluorinated compounds and evaluation of the availability of reclaimed water in Kinmen. Emerging Contaminants, 2(3), 135–144. https://doi.org/10.1016/j.emcon.2016.05.001
dc.relationLee, W. M. (2017). Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? Journal of Hepatology, 67(6), 1324–1331. https://doi.org/10.1016/j.jhep.2017.07.005
dc.relationLeme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research - Reviews in Mutation Research. https://doi.org/10.1016/j.mrrev.2009.06.002
dc.relationLi, S. W., & Lin, A. Y. C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190–196. https://doi.org/10.1016/j.chemosphere.2015.06.010
dc.relationLi, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2014a). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2013.09.018
dc.relationLin, A. Y., Lin, C. A., Tung, H. H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1–3), 242–250. https://doi.org/10.1016/j.jhazmat.2010.07.017
dc.relationLin, Y. C., Panchangam, S. C., Liu, L. C., & Lin, A. Y. C. (2019). The design of a sunlight-focusing and solar tracking system: A potential application for the degradation of pharmaceuticals in water. Chemosphere, 214, 452–461. https://doi.org/10.1016/j.chemosphere.2018.09.114
dc.relationMacLeod, S. L., & Wong, C. S. (2010). Loadings, trends, comparisons, and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments. Water Research. https://doi.org/10.1016/j.watres.2009.09.056
dc.relationMatamoros, V., Nguyen, L. X., Arias, C. A., Salvadó, V., & Brix, H. (2012). Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere, 88(10), 1257–1264. https://doi.org/10.1016/j.chemosphere.2012.04.004
dc.relationMcClellan, K., & Halden, R. U. (2010). Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Research. https://doi.org/10.1016/j.watres.2009.12.032
dc.relationMompelat, S., Le Bot, B., & Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35(5), 803–814. https://doi.org/10.1016/j.envint.2008.10.008
dc.relationMoreno-Ortiz, V. C., Martínez-Núñez, J. M., Kravzov-Jinich, J., Pérez-Hernández, L. A., Moreno-Bonett, C., & Altagracia-Martínez, M. (2013). Los medicamentos de receta de origen sintético y su impacto en el medio ambiente. Revista Mexicana de Ciencias Farmaceuticas, 44(4), 17–29.
dc.relationNikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4), 1225–1234. https://doi.org/10.1007/s00216-006-1035-8
dc.relationNunes, B., Antunes, S. C., Santos, J., Martins, L., & Castro, B. B. (2014). Toxic potential of paracetamol to freshwater organisms: A headache to environmental regulators? Ecotoxicology and Environmental Safety, 107, 178–185. https://doi.org/10.1016/J.ECOENV.2014.05.027
dc.relationObservamed, & Colombiana, F. M. (2013). Informe SISMED 2012: Cinco años del Sistema de Información de Precios SISMED (Vol. 23). Bogotá.
dc.relationOrtiz de García, S., García-Encina, P. A., & Irusta-Mata, R. (2017). The potential ecotoxicological impact of pharmaceutical and personal care products on humans and freshwater, based on USEtoxTM characterization factors. A Spanish case study of toxicity impact scores. Science of the Total Environment, 609, 429–445. https://doi.org/10.1016/j.scitotenv.2017.07.148
dc.relationPal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026
dc.relationPapageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of The Total Environment, 543, 547–569. https://doi.org/10.1016/J.SCITOTENV.2015.11.047
dc.relationPeñate, I. Q., Javier, U., Haza, J., Wilhelm, A., & Delmas, H. (2009). Contaminación de las aguas con productos farmaceuticos. Estrategias para enfrentar la problemática. Revista CENIC : Ciencias Biológicas, 40(3), 173–179.
dc.relationPersistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. (2009). Water Research, 43(2), 351–362. https://doi.org/10.1016/J.WATRES.2008.10.039
dc.relationPetrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. https://doi.org/10.1016/J.WATRES.2014.08.053
dc.relationPhong Vo, H. N., Le, G. K., Hong Nguyen, T. M., Bui, X. T., Nguyen, K. H., Rene, E. R., … Mohan, R. (2019). Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.124391
dc.relationQuesada, S., Tena, A., Guillén, D., Ginebreda, A., Vericat, D., Martínez, E., … Barceló, D. (2014). Dynamics of suspended sediment borne persistent organic pollutants in a large regulated Mediterranean river (Ebro, NE Spain). The Science of the Total Environment, 473–474, 381–390. https://doi.org/10.1016/j.scitotenv.2013.11.040
dc.relationRica, U. D. C., & López, P. (2015). Prueba De Disolución “in Vitro” De Tabletas De Acetaminofén, Cuantificando En Hplc Con Detector Electroquímico. InterSedes: Revista de Las Sedes Regionales, XVI(33), 26–37.
dc.relationRichardson, S. D., & Ternes, T. A. (2011, June). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, Vol. 83, pp. 4616–4648. https://doi.org/10.1021/ac200915r
dc.relationRivera-Jaimes, J. A., Postigo, C., Melgoza-Alemán, R. M., Aceña, J., Barceló, D., & López de Alda, M. (2018). Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.09.134
dc.relationRodriguez-Nogales, J. M., Roura, E., & Contreras, E. (2005). Biosynthesis of ethyl butyrate using immobilized lipase: A statistical approach. Process Biochemistry, 40(1), 63–68. https://doi.org/10.1016/j.procbio.2003.11.049
dc.relationRoose, P., & Brinkman, U. A. T. (2005). Monitoring organic microcontaminants in the marine environment: principles, programmes and progress. TrAC Trends in Analytical Chemistry, 24(11), 897–926. https://doi.org/10.1016/j.trac.2005.10.007
dc.relationSanderson, H., Brain, R. A., Johnson, D. J., Wilson, C. J., & Solomon, K. R. (2004). Toxicity classification and evaluation of four pharmaceuticals classes: Antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology, 203(1–3), 27–40. https://doi.org/10.1016/j.tox.2004.05.015
dc.relationSantos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1–3), 45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100
dc.relationSnyder, L. R. (1975). Practical liquid chromatography. Journal of Chromatography A, 104(2), 480–481. https://doi.org/10.1016/s0021-9673(00)91881-8
dc.relationSun, J., Luo, Q., Wang, D., & Wang, Z. (2015). Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 117, 132–140. https://doi.org/10.1016/j.ecoenv.2015.03.032
dc.relationTejada, C., Quiñones, E., & Peña, M. (2014). Contaminantes Emergentes En Aguas: Metabolitos De Fármacos. Universidad Militar Nueva Granada, 1–48. https://doi.org/10.18359/rfcb.341
dc.relationTrejos, N., & Myriam, C. (2008). Validación de una metodología analítica por HPLC para la cuantificación de sulfadiazina de plata en crema Validation of an analytical methodology by HPLC for the quantification of silver sulfadiazine in cream. 37(2), 191–199.
dc.relationVancouver Island University, U. (2008). Acetaminophen ( Tylenol ) : A Pain to the Environment. Environmental Organic Chemistry, (12), 2008.
dc.relationVerma, A., Nimana, B., Olateju, B., Rahman, M. M., Radpour, S., Canter, C., … Kumar, A. (2017). A techno-economic assessment of bitumen and synthetic crude oil transport (SCO) in the Canadian oil sands industry: Oil via rail or pipeline? Energy. https://doi.org/10.1016/j.energy.2017.02.057
dc.relationWalters, E., McClellan, K., & Halden, R. U. (2010). Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Research, 44(20), 6011–6020. https://doi.org/10.1016/j.watres.2010.07.051
dc.relationXiao, H., Song, H., Xie, H., Huang, W., Tan, J., & Wu, J. (2013). Transformation of acetaminophen using manganese dioxide - mediated oxidative processes: Reaction rates and pathways. Journal of Hazardous Materials, 250–251, 138–146. https://doi.org/10.1016/j.jhazmat.2013.01.070
dc.relationYamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., … Sekizawa, J. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43(2), 351–362. https://doi.org/10.1016/j.watres.2008.10.039
dc.relationZhang, Y., & Zhou, J. L. (2008). Occurrence and removal of endocrine disrupting chemicals in wastewater. In Chemosphere (Vol. 73). https://doi.org/10.1016/j.chemosphere.2008.06.001
dc.relationRojas Mantilla Astrid Dayana, T. D. (2016). Estudio de la presencia, ocurrencia y destino final, de un compuesto farmacéutico (acetaminofén) en una planta de tratamiento de agua residual instituacional educativa. Bucaramanga : Universidad Pontificia Bolivariana.No Title (Universidad Pontificia Bolivariana-Seccional Bucaramanga.). https://doi.org/NA
dc.relationWolff, M. S. (2006). Endocrine Disruptors: Challenges for Environmental Research in the 21st Century. Annals of the New York Academy of Sciences, 1076(1), 228–238. https://doi.org/10.1196/annals.1371.009
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCC0 1.0 Universal
dc.titleEvaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa


Este ítem pertenece a la siguiente institución