dc.contributorMateus Rojas, Armando
dc.contributorhttps://orcid.org/0000-0002-2399-4859
dc.contributorhttps://scholar.google.com/citations?user=1az5o_IAAAAJ&hl=es
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000680630
dc.contributorUniversidad Santo Tomás
dc.creatorPlazas Pirabán, Lina Alejandra
dc.creatorBetancur Sanchez, Bryan Steven
dc.date.accessioned2021-09-17T15:04:03Z
dc.date.available2021-09-17T15:04:03Z
dc.date.created2021-09-17T15:04:03Z
dc.date.issued2021-09-16
dc.identifierPlazas Pirabán, L.A. & Betancur Sanchez, B.S. (2021) Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar [Trabajo de grado pregrado Ingeniería Electrónica] Repositorio Institucional
dc.identifierhttp://hdl.handle.net/11634/35563
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThis document presents the development of a multimodal re-identification algorithm to improve Human-Robot interaction in the home care setting. In this way, different people recognition strategies were integrated, such as facial recognition, voice recognition and soft-biometric characteristics (hair, eye and skin color). For this, in the first place a bibliographic consultation was carried out where possible algorithms to be used were chosen; Later, different tests were implemented and carried out in order to choose the algorithms that presented the best results for each re-identification strategy, then they were integrated into a single development based on multiple linear regression, which had a 97.4% success rate. Similarly, the entire system was implemented in ROS (robotic operating system) and tests were carried out where it was evaluated if the algorithm recognized personalized basic orders.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationAlpaydin E. Introduction to machine learning. MIT press; 2020.
dc.relationKapusta A, Erickson Z, Clever HM, et al. Personalized collaborative plans for robot-assisted dressing via optimization and simulation. Autonomous Robots. 2019;43(8):2183-2207.
dc.relationZhang DD. Automated biometrics: Technologies and systems. Vol 7. Springer Science & Business Media; 2013.
dc.relationAlejandra MD. Re-identificaci´on de personas a trav´es de sus caracter´ısticas soft-biom´etricas en un entorno multi-c´amara de video vigilancia. Ingenier´ıa, investigaci´on y tecnolog´ıa. 2016;17(2):257-27
dc.relationNorvig P, Russell S. Inteligencia artificial. Editora Campus. 2004;20.
dc.relationCong DT, Khoudour L, Achard C, Meurie C, Lezoray O. People re identification by spectral classification of silhouettes. Signal Process. 2010;90(8):2362-2374.
dc.relationSalter T, Werry I, Michaud F. Going into the wild in child–robot interaction studies: Issues in social robotic development. Intelligent Service Robotics. 2008;1(2):93-108.
dc.relationWechsler H, Phillips JP, Bruce V, Soulie FF, Huang TS. Face recognition: From theory to applications. Vol 163. Springer Science & Business Media; 2012.
dc.relationZeng J, Zeng J, Qiu X. Deep learning based forensic face verification in videos. . 2017:77-80.
dc.relationRashid RA, Mahalin NH, Sarijari MA, Aziz AAA. Security system using biometric technology: Design and implementation of voice recognition system (VRS). . 2008:898-902.
dc.relationeinrich C, Volkhardt M, Gross H. Appearance-based 3d upper body pose estimation and person re-identification on mobile robots. . 2013:4384-4390.
dc.relationBarea R, Bergasa LM, L´opez E, Escudero MS, Leon C. Face recognition for social interaction with a personal robotic assistant. . 2005;1:382-385.
dc.relationHsu C, Lin C, Su W, Cheung G. Sigan: Siamese generative adversarial network for identity-preserving face hallucination. IEEE Trans Image Process. 2019;28(12):6225-6236.
dc.relationD’Auria D, Persia F, Bettini F, Helmer S, Siciliano B. Sarri: A smart rapiro robot integrating a framework for automatic high-level surveillance event detection. . 2018:238-241
dc.relationMatamoros M, Rascon C, Hart J, et al. RoboCup@Home rules & regulations.
dc.relationKim D, Yoon H, Chi S, Cho Y. Face identification for human robot interaction: Intelligent security system for multi-user working environment on PC. . 2006:617-622.
dc.relationAkbulut Y, S¸eng¨ur A, Budak U, Ekici S. Deep learning based face ¨ liveness detection in videos. . 2017:1-4.
dc.relationBae H, Lee H, Lee S. Voice recognition based on adaptive MFCC and deep learning. . 2016:1542-1546.
dc.relationChakraborty K, Talele A, Upadhya S. Voice recognition using MFCC algorithm. International Journal of Innovative Research in Advanced Engineering (IJIRAE). 2014;1(10):2349-2163.
dc.relationFang X, Gu W, Huang C. A method of skin color identification based on color classification. . 2011;4:2355-2358.
dc.relationSong A, Hu Q, Ding X, Di X, Song Z. Similar face recognition using the IE-CNN model. IEEE Access. 2020;8:45244-45253.
dc.relationSinith MS, Salim A, Sankar KG, Narayanan KS, Soman V. A novel method for text-independent speaker identification using mfcc and gmm. . 2010:292-296.
dc.relationPo lap D, Wo´zniak M. Voice recognition by neuro-heuristic method. Tsinghua Science and Technology. 2018;24(1):9-17.
dc.relationChristensen HI, Batzinger T, Bekris K, et al. A roadmap for us robotics: From internet to robotics. Computing Community Consortium. 2009;44.
dc.relationSiciliano B, Caccavale F, Zwicker E, et al. Euroc-the challenge initiative for european robotics. . 2014:1-7.
dc.relationTome P, Fierrez J, Vera-Rodriguez R, Nixon MS. Soft biometrics and their application in person recognition at a distance. IEEE Transactions on information forensics and security. 2014;9(3):464-475.
dc.relationShan C, Gong S, McOwan PW. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vision Comput. 2009;27(6):803-816.
dc.relationEphraim T, Himmelman T, Siddiqi K. Real-time viola-jones face detection in a web browser. . 2009:321-328.
dc.relationSu´arez EJC. Tutorial sobre máquinas de vectores soporte (sVM). Tutorial sobre Máquinas de Vectores Soporte (SVM). 2014:1-12
dc.relationChandrasekhar AM, Raghuveer K. An effective technique for intrusion detection using neuro -fuzzy and radial svm classifier. In: Computer networks & communications (NetCom). Springer; 2013:499-507
dc.relationOlabe XB. Redes neuronales artificiales y sus aplicaciones. Publicaciones de la Escuela de Ingenieros. 1998.
dc.relationGazalba I, Reza NGI. Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. . 2017:294-298.
dc.relationMuda L, Begam M, Elamvazuthi I. Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083. 2010.
dc.relationEskidere O, G¨urhanlı A. Voice disorder classification based on ¨ multitaper mel frequency cepstral coefficients features. Computational and mathematical methods in medicine. 2015;2015.
dc.relationGupta A, Gupta H. Applications of MFCC and vector quantization in speaker recognition. . 2013:170-173
dc.relationHuang T, Peng H, Zhang K. Model selection for gaussian mixture models. Statistica Sinica. 2017:147-169.
dc.relationBuza E, Akagic A, Omanovic S. Skin detection based on image color segmentation with histogram and k-means clustering. . 2017:1181-1186.
dc.relationHe K, Gkioxari G, Doll´ar P, Girshick R. Mask r-cnn. . 2017:2961-2969.
dc.relationZhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett. 2016;23(10):1499-1503.
dc.relationAsafu-Adjei JK, Betensky RA. A pairwise na¨ıve bayes approach to bayesian classification. Int J Pat Recognit Artif Intell. 2015;29(07):1550023.
dc.relationJang E, Gu S, Poole B. Categorical reparameterization with gumbel softmax. arXiv preprint arXiv:1611.01144. 201
dc.relationFurui S, Kikuchi T, Shinnaka Y, Hori C. Speech-to-text and speech to-speech summarization of spontaneous speech. IEEE Transactions on Speech and Audio Processing. 2004;12(4):401-408.
dc.relationROS.org. https://wiki.ros.org/.
dc.relationRahmad C, Asmara RA, Putra D, Dharma I, Darmono H, Muhiqqin I. Comparison of viola-jones haar cascade classifier and histogram of oriented gradients (HOG) for face detection. . 2020;732(1):012038.
dc.relationShinwari AR, Jalali Balooch A, Alariki AA, Abduljalil Abdulhak S. A comparative study of face recognition algorithms under facial expression and illumination. ICACT. Feb 2019:390-394. https://ieeexplore.ieee.org/document/8702002. doi: 10.23919/ICACT.2019.8702002.
dc.relationWeng Z, Li L, Guo D. Speaker recognition using weighted dynamic MFCC based on GMM. . 2010:285-288.
dc.relationShahin I, Nassif AB, Hamsa S. Novel cascaded gaussian mixture model-deep neural network classifier for speaker identification in emotional talking environments. Neural Computing and Applications. 2020;32(7):2575-2587.
dc.relationKumari TJ, Jayanna HS. Comparison of LPCC and MFCC features and GMM and GMM-UBM modeling for limited data speaker verification. . 2014:1-6.
dc.relationThakker M, Vyas S, Ved P, Therese SS. Speaker identification in a multi-speaker environment. In: Information and communication technology for sustainable development. Springer; 2018:239-244.
dc.relationAmante R, S, Tingzon I. Speaker recognition using mel frequency cepstral coefficients with spectral subband centroids features. .
dc.relationReynolds DA, Rose RC. Robust text-independent speaker identification using gaussian mixture speaker models. IEEE transactions on speech and audio processing. 1995;3(1):72-83.
dc.relationRozario B, Thomas A, Mathew D. Performance comparison of phoneme modeling using MFCC and IHCC features with various optimization algorithms for neural network architectures. . 2019:240- 245
dc.relationKamruzzaman SM, Karim A, Islam M, Haque M. Speaker identification using mfcc-domain support vector machine. arXiv preprint arXiv:1009.4972. 2010.
dc.relationMansour A, Lachiri Z. SVM based emotional speaker recognition using MFCC-SDC features. International Journal of Advanced Computer Science and Applications. 2017;8(4):538-544.
dc.relationDi Nuovo A, Conti D, Trubia G, Buono S, Di Nuovo S. Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics. 2018;7(2):25.
dc.relationClearpath Robotics. Husky UGV - outdoor field research robot by clearpath. https://clearpathrobotics.com/husky-unmanned ground vehicle-robot/.
dc.relationROS Wiki. rviz. http://wiki.ros.org/rviz
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDesarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar


Este ítem pertenece a la siguiente institución