dc.contributor | Mateus Rojas, Armando | |
dc.contributor | https://orcid.org/0000-0002-2399-4859 | |
dc.contributor | https://scholar.google.com/citations?user=1az5o_IAAAAJ&hl=es | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000680630 | |
dc.contributor | Universidad Santo Tomás | |
dc.creator | Plazas Pirabán, Lina Alejandra | |
dc.creator | Betancur Sanchez, Bryan Steven | |
dc.date.accessioned | 2021-09-17T15:04:03Z | |
dc.date.available | 2021-09-17T15:04:03Z | |
dc.date.created | 2021-09-17T15:04:03Z | |
dc.date.issued | 2021-09-16 | |
dc.identifier | Plazas Pirabán, L.A. & Betancur Sanchez, B.S. (2021) Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar [Trabajo de grado pregrado Ingeniería Electrónica] Repositorio Institucional | |
dc.identifier | http://hdl.handle.net/11634/35563 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.description.abstract | This document presents the development of a multimodal re-identification algorithm to improve Human-Robot interaction in the home care setting. In this way, different people recognition strategies were integrated, such as facial recognition, voice recognition and soft-biometric characteristics (hair, eye and skin color). For this, in the first place a bibliographic consultation was carried out where possible algorithms to be used were chosen; Later, different tests were implemented and carried out in order to choose the algorithms that presented the best results for each re-identification strategy, then they were integrated into a single development based on multiple linear regression, which had a 97.4% success rate. Similarly, the entire system was implemented in ROS (robotic operating system) and tests were carried out where it was evaluated if the algorithm recognized personalized basic orders. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Pregrado Ingeniería Electrónica | |
dc.publisher | Facultad de Ingeniería Electrónica | |
dc.relation | Alpaydin E. Introduction to machine learning. MIT press; 2020. | |
dc.relation | Kapusta A, Erickson Z, Clever HM, et al. Personalized collaborative plans for robot-assisted dressing via optimization and simulation. Autonomous Robots. 2019;43(8):2183-2207. | |
dc.relation | Zhang DD. Automated biometrics: Technologies and systems. Vol 7. Springer Science & Business Media; 2013. | |
dc.relation | Alejandra MD. Re-identificaci´on de personas a trav´es de sus caracter´ısticas soft-biom´etricas en un entorno multi-c´amara de video vigilancia. Ingenier´ıa, investigaci´on y tecnolog´ıa. 2016;17(2):257-27 | |
dc.relation | Norvig P, Russell S. Inteligencia artificial. Editora Campus. 2004;20. | |
dc.relation | Cong DT, Khoudour L, Achard C, Meurie C, Lezoray O. People re identification by spectral classification of silhouettes. Signal Process. 2010;90(8):2362-2374. | |
dc.relation | Salter T, Werry I, Michaud F. Going into the wild in child–robot interaction studies: Issues in social robotic development. Intelligent Service Robotics. 2008;1(2):93-108. | |
dc.relation | Wechsler H, Phillips JP, Bruce V, Soulie FF, Huang TS. Face recognition: From theory to applications. Vol 163. Springer Science & Business Media; 2012. | |
dc.relation | Zeng J, Zeng J, Qiu X. Deep learning based forensic face verification in videos. . 2017:77-80. | |
dc.relation | Rashid RA, Mahalin NH, Sarijari MA, Aziz AAA. Security system using biometric technology: Design and implementation of voice recognition system (VRS). . 2008:898-902. | |
dc.relation | einrich C, Volkhardt M, Gross H. Appearance-based 3d upper body pose estimation and person re-identification on mobile robots. . 2013:4384-4390. | |
dc.relation | Barea R, Bergasa LM, L´opez E, Escudero MS, Leon C. Face recognition for social interaction with a personal robotic assistant. . 2005;1:382-385. | |
dc.relation | Hsu C, Lin C, Su W, Cheung G. Sigan: Siamese generative adversarial network for identity-preserving face hallucination. IEEE Trans Image Process. 2019;28(12):6225-6236. | |
dc.relation | D’Auria D, Persia F, Bettini F, Helmer S, Siciliano B. Sarri: A smart rapiro robot integrating a framework for automatic high-level surveillance event detection. . 2018:238-241 | |
dc.relation | Matamoros M, Rascon C, Hart J, et al. RoboCup@Home rules & regulations. | |
dc.relation | Kim D, Yoon H, Chi S, Cho Y. Face identification for human robot interaction: Intelligent security system for multi-user working environment on PC. . 2006:617-622. | |
dc.relation | Akbulut Y, S¸eng¨ur A, Budak U, Ekici S. Deep learning based face ¨ liveness detection in videos. . 2017:1-4. | |
dc.relation | Bae H, Lee H, Lee S. Voice recognition based on adaptive MFCC and deep learning. . 2016:1542-1546. | |
dc.relation | Chakraborty K, Talele A, Upadhya S. Voice recognition using MFCC algorithm. International Journal of Innovative Research in Advanced Engineering (IJIRAE). 2014;1(10):2349-2163. | |
dc.relation | Fang X, Gu W, Huang C. A method of skin color identification based on color classification. . 2011;4:2355-2358. | |
dc.relation | Song A, Hu Q, Ding X, Di X, Song Z. Similar face recognition using the IE-CNN model. IEEE Access. 2020;8:45244-45253. | |
dc.relation | Sinith MS, Salim A, Sankar KG, Narayanan KS, Soman V. A novel method for text-independent speaker identification using mfcc and gmm. . 2010:292-296. | |
dc.relation | Po lap D, Wo´zniak M. Voice recognition by neuro-heuristic method. Tsinghua Science and Technology. 2018;24(1):9-17. | |
dc.relation | Christensen HI, Batzinger T, Bekris K, et al. A roadmap for us robotics: From internet to robotics. Computing Community Consortium. 2009;44. | |
dc.relation | Siciliano B, Caccavale F, Zwicker E, et al. Euroc-the challenge initiative for european robotics. . 2014:1-7. | |
dc.relation | Tome P, Fierrez J, Vera-Rodriguez R, Nixon MS. Soft biometrics and their application in person recognition at a distance. IEEE Transactions on information forensics and security. 2014;9(3):464-475. | |
dc.relation | Shan C, Gong S, McOwan PW. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vision Comput. 2009;27(6):803-816. | |
dc.relation | Ephraim T, Himmelman T, Siddiqi K. Real-time viola-jones face detection in a web browser. . 2009:321-328. | |
dc.relation | Su´arez EJC. Tutorial sobre máquinas de vectores soporte (sVM). Tutorial sobre Máquinas de Vectores Soporte (SVM). 2014:1-12 | |
dc.relation | Chandrasekhar AM, Raghuveer K. An effective technique for intrusion detection using neuro -fuzzy and radial svm classifier. In: Computer networks & communications (NetCom). Springer; 2013:499-507 | |
dc.relation | Olabe XB. Redes neuronales artificiales y sus aplicaciones. Publicaciones de la Escuela de Ingenieros. 1998. | |
dc.relation | Gazalba I, Reza NGI. Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. . 2017:294-298. | |
dc.relation | Muda L, Begam M, Elamvazuthi I. Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083. 2010. | |
dc.relation | Eskidere O, G¨urhanlı A. Voice disorder classification based on ¨ multitaper mel frequency cepstral coefficients features. Computational and mathematical methods in medicine. 2015;2015. | |
dc.relation | Gupta A, Gupta H. Applications of MFCC and vector quantization in speaker recognition. . 2013:170-173 | |
dc.relation | Huang T, Peng H, Zhang K. Model selection for gaussian mixture models. Statistica Sinica. 2017:147-169. | |
dc.relation | Buza E, Akagic A, Omanovic S. Skin detection based on image color segmentation with histogram and k-means clustering. . 2017:1181-1186. | |
dc.relation | He K, Gkioxari G, Doll´ar P, Girshick R. Mask r-cnn. . 2017:2961-2969. | |
dc.relation | Zhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett. 2016;23(10):1499-1503. | |
dc.relation | Asafu-Adjei JK, Betensky RA. A pairwise na¨ıve bayes approach to bayesian classification. Int J Pat Recognit Artif Intell. 2015;29(07):1550023. | |
dc.relation | Jang E, Gu S, Poole B. Categorical reparameterization with gumbel softmax. arXiv preprint arXiv:1611.01144. 201 | |
dc.relation | Furui S, Kikuchi T, Shinnaka Y, Hori C. Speech-to-text and speech to-speech summarization of spontaneous speech. IEEE Transactions on Speech and Audio Processing. 2004;12(4):401-408. | |
dc.relation | ROS.org. https://wiki.ros.org/. | |
dc.relation | Rahmad C, Asmara RA, Putra D, Dharma I, Darmono H, Muhiqqin I. Comparison of viola-jones haar cascade classifier and histogram of oriented gradients (HOG) for face detection. . 2020;732(1):012038. | |
dc.relation | Shinwari AR, Jalali Balooch A, Alariki AA, Abduljalil Abdulhak S. A comparative study of face recognition algorithms under facial expression and illumination. ICACT. Feb 2019:390-394. https://ieeexplore.ieee.org/document/8702002. doi: 10.23919/ICACT.2019.8702002. | |
dc.relation | Weng Z, Li L, Guo D. Speaker recognition using weighted dynamic MFCC based on GMM. . 2010:285-288. | |
dc.relation | Shahin I, Nassif AB, Hamsa S. Novel cascaded gaussian mixture model-deep neural network classifier for speaker identification in emotional talking environments. Neural Computing and Applications. 2020;32(7):2575-2587. | |
dc.relation | Kumari TJ, Jayanna HS. Comparison of LPCC and MFCC features and GMM and GMM-UBM modeling for limited data speaker verification. . 2014:1-6. | |
dc.relation | Thakker M, Vyas S, Ved P, Therese SS. Speaker identification in a multi-speaker environment. In: Information and communication technology for sustainable development. Springer; 2018:239-244. | |
dc.relation | Amante R, S, Tingzon I. Speaker recognition using mel frequency cepstral coefficients with spectral subband centroids features. . | |
dc.relation | Reynolds DA, Rose RC. Robust text-independent speaker identification using gaussian mixture speaker models. IEEE transactions on speech and audio processing. 1995;3(1):72-83. | |
dc.relation | Rozario B, Thomas A, Mathew D. Performance comparison of phoneme modeling using MFCC and IHCC features with various optimization algorithms for neural network architectures. . 2019:240- 245 | |
dc.relation | Kamruzzaman SM, Karim A, Islam M, Haque M. Speaker identification using mfcc-domain support vector machine. arXiv preprint arXiv:1009.4972. 2010. | |
dc.relation | Mansour A, Lachiri Z. SVM based emotional speaker recognition using MFCC-SDC features. International Journal of Advanced Computer Science and Applications. 2017;8(4):538-544. | |
dc.relation | Di Nuovo A, Conti D, Trubia G, Buono S, Di Nuovo S. Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics. 2018;7(2):25. | |
dc.relation | Clearpath Robotics. Husky UGV - outdoor field research robot by clearpath. https://clearpathrobotics.com/husky-unmanned ground vehicle-robot/. | |
dc.relation | ROS Wiki. rviz. http://wiki.ros.org/rviz | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar | |