dc.contributorAcevedo Pabón, Paola Andrea
dc.contributorRangel Villegas, Carol Jhulieth
dc.contributorhttps://orcid.org/0000-0002-1549-3819
dc.contributorhttps://orcid.org/0000-0002-4764-9793
dc.contributorhttps://scholar.google.com/citations?user=uBreqmgAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001028111
dc.contributorUniversidad Santo Tomás
dc.creatorRomero Mora, Miguel Angel
dc.creatorRodríguez Reyes, Valentina
dc.date.accessioned2021-05-05T19:54:08Z
dc.date.available2021-05-05T19:54:08Z
dc.date.created2021-05-05T19:54:08Z
dc.date.issued2021-05-05
dc.identifierRomero Mora, M. A. & Rodríguez Reyes, V. (2021). Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifierhttp://hdl.handle.net/11634/33993
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relation[1] S.Z. Baykara, “Hydrogen: a brief overview on its sources, production and environmental impact”, International Journal of Hydrogen Energy, vol. 43, pp. 10605–10614. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.02.022 DOI: 10.1016/j.ijhydene.2018.02.022
dc.relation[2] W. Cieciura-Włoch et al, “Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation”, Renewable Energy, vol. 153, pp. 1226–1237, 2020. Available: https://dx.doi.org/10.1016/j.renene.2020.02.085. DOI: 10.1016/j.renene.2020.02.085
dc.relation[3] T. Keskin et al, “Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes”, International Journal of Hydrogen Energy, vol. 43, pp. 10666-10677. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.01.028 DOI: 10.1016/j.ijhydene.2018.01.028
dc.relation[4] C. Sawatdeenarunat et al., “Anaerobic biorefinery: Current status, challenges, and opportunities,” Bioresource Technology vol. 215, pp. 304–313. 2016. Available: https://dx.doi.org/10.1016/j.biortech.2016.03.074 DOI: 10.1016/j.biortech.2016.03.074
dc.relation[5] M. R. Atelge et al, "Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies," Bioresource Technology, vol. 322, pp. 124470, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124470. DOI: 10.1016/j.biortech.2020.124470
dc.relation[6] Weiland, P. “Biogas production: current state and perspectives”, Applied Microbiology and Biotechnology, vol. 85, pp. 849–860, 2010. Available: https://dx.doi.org/10.1007/s00253-09- 2246-7 DOI: 10.1007/s00253-09-2246-7
dc.relation[7] M. A. Hernández, “Evaluación de rutas de aprovechamiento de biomasa residual bajo el esquema de biorrefinerías”. Colciencias, 2016.
dc.relation[8] Q. Zhang, J. Hu, and D.-J. Lee, “Biogas from anaerobic digestion processes: Research updates”, Renewable Energy, vol. 98, pp. 108–119, 2016. Available: https://dx.doi.org/10.1016/j.renene.2016.02.029. DOI: 10.1016/j.renene.2016.02.029
dc.relation[9] K. Urbaniec et al. “Biomass residues as raw material for dark hydrogen fermentation – A review,” vol. 40, no. 9, pp. 3648–3658, Mar. 2015. Available: https://dx.doi.org/10.1016/j.ijhydene.2015.01.073 DOI: 10.1016/j.ijhydene.2015.01.073
dc.relation[10] R. Łukajtis et al. “Hydrogen production from biomass using dark fermentation,” Renewable and Sustainable Energy Review vol. 91. pp. 665–694, 2018. Available: https://dx.doi.org/10.1016/j.rser.2018.04.043 DOI: 10.1016/j.rser.2018.04.043
dc.relation[11] J. Rajesh Banu et al. "Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route," Bioresource Technology, vol. 298, pp. 122378, 2020. Available: https://dx.doi.org/10.1016/j.biortech.2019.122378 DOI: 10.1016/j.biortech.2019.122378
dc.relation[12] A. Schievano et al. "Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran," Waste Management (Elmsford), vol. 56, pp. 519-529, 2016. Available: https://www.ncbi.nlm.nih.gov/pubmed/27406307 . DOI: 10.1016/j.wasman.2016.07.001
dc.relation[13] E. Castelló et al. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, vol. 119, pp. 109602, 2020. Available: https://doi.org/10.1016/j.rser.2019.109602 DOI: 10.1016/j.rser.2019.109602
dc.relation[14] S. Dahiya et al. "Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives," Bioresource Technology., vol. 321, pp. 124354, 2021. Available: https://dx.doi.org/10.1016/j.biortech.2020.124354 DOI: 10.1016/j.biortech.2020.124354.
dc.relation[15] M. A. Hernández et al. "Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure," Bioresource Technology, vol. 168, (SI), pp. 112- 118, 2014. Available: http://dx.doi.org/10.1016/j.biortech.2014.02.101 DOI: 10.1016/j.biortech.2014.02.101.
dc.relation[16] M. Hernandez et al. “Assessment of the Biohydrogen Production Potential of Different Organic Residues In Colombia: Cocoa Waste, Pig Manure and Coffee Mucilage”, Chemical Engineering Transactions, vol. 65, pp. 247-252, Jun. 2018. Available: https://dx.doi.org/10.3303/CET1865042 DOI: 10.3303/CET1865042.
dc.relation[17] Gonzales RR et al. “Optimization of dilute acid and enzymatic hydrolysis for dark fermentative hydrogen production from the empty fruit bunch of oil palm”, International Journal of Hydrogen Energy, vol. 44, pp. 2191–2202, 2019. Available: https://doi.org/10.1016/j.ijhydene.2018.08.022. DOI: 10.1016/j.ijhydene.2018.08.022.
dc.relation[18] Arreola-Vargas J. et al. “Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: role of hydrolysates constituents”. International Journal of Hydrogen Energy, vol. 40, pp. 10756-10765, 2015. Available: https://doi.org/10.1016/j.ijhydene.2015.05.200. DOI: 10.1016/j.ijhydene.2015.05.200.
dc.relation[19] Farghaly, A. et al. “Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater”. Environmental Science and Pollution Research, vol. 23, pp. 3834–3846, 2016. Available: https://doi.org/10.1007/s11356-015-5652-7. DOI: 10.1007/s11356-015-5652-7
dc.relation[20] Poontaweegeratigarn, T. et al. “Hydrogen production from alcohol wastewater by upflow anaerobic sludge blanket reactors under mesophilic temperature”. International Scholarly and Scientific Research and Innovation, vol. 6, pp. 293-296, 2012. Available: https://doi.org/10.5281/zenodo.1076096 DOI: 10.5281/zenodo.1076096.
dc.relation[21] Kumar, G. et al. “A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options”. Energy Conversion and Management, vol. 141, pp. 390–402, 2017. Available: https://dx.doi.org/10.1016/j.enconman.2016.09.087. DOI: 10.1016/j.enconman.2016.09.087.
dc.relation[22] Poladyan A et al. “Hydrogen production by Escherichia coli using brewery waste: optimal pretreatment of waste and role of different hydrogenases”. Renew Energy, vol. 115, pp. 931-936, 2018. Available: https://dx.doi.org/10.1016/j.renene.2017.09.022. DOI: 10.1016/j.renene.2017.09.022.
dc.relation[23] Moodley P. et al. “Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: a sustainable feedstock for biohydrogen production”. Engineering Science and Technology an International Journal, vol. 21, pp. 107-116, 2018. Available: https://dx.doi.org/10.1016/j.jestch.2017.11.010. DOI: 10.1016/j.jestch.2017.11.010.
dc.relation[24] Reddy K. et al.“Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles”. Environmental Science and Pollution Research, vol. 24, pp. 8790- 8804, 2017. Available: https://dx.doi.org/10.1007/s11356-017-8560-1. DOI: 10.1007/s11356-017-8560-1.
dc.relation[25] Rorke D. et al, “Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: optimization of saccharification, hydrogen production and preliminary scale up”. International Journal of Hydrogen Energy, vol. 41, pp. 12941- 12952, 2016. Available: https://dx.doi.org/10.1016/j.ijhydene.2016.06.112. DOI: 10.1016/j.ijhydene.2016.06.112.
dc.relation[26] Tandon M. et al. “Enterobacter ludwigii strain IF2SW-B4 isolated for bio-hydrogen production from rice bran and de-oiled rice bran”. Environmental Technology and Innovation, vol. 10, pp. 345- 354, 2018. Available: https://dx.doi.org/10.1016/j.eti.2018.03.008. DOI: 10.1016/j.eti.2018.03.008.
dc.relation[27] K. Rambabu et al, "Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation," Bioresourse Technology., vol. 319, pp. 124243, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124243 DOI: 10.1016/j.biortech.2020.124243.
dc.relation[28] D. Mu et al, "Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production," Bioresourse Technology., vol. 302, pp. 122879, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122879 DOI: 10.1016/j.biortech.2020.122879.
dc.relation[29] S. A. Lateef et al, "Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature," Bioresource Technology, vol. 110, pp. 251-257, 2012. Available: http://dx.doi.org/10.1016/j.biortech.2012.01.102. DOI: 10.1016/j.biortech.2012.01.102.
dc.relation[30] Rangel, Carol J. et al. “Hydrogen production by dark fermentation process from pig manure, cocoa mucilage and coffee mucilage”, Biomass Conv. Bioref. 2020. Available: https://dx.doi.org/10.1007/s13399-020-00618-z DOI: /10.1007/s13399-020-00618-z.
dc.relation[31] Zhang Y, et al “Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria”. International Journey of Hydrogen Energy. ol 31 pp. 441-446. 2006. Available: http://dx.doi.org/10.1016/j.ijhydene.2005.05.006 DOI: 10.1016/j.ijhydene.2005.05.006
dc.relation[32] Yokoyama H et al. “Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry”. Applied Microbiology and Biotechnology vol. 74, pp. 474–483. 2007. Available: http://dx.doi.org/10.1007/s00253-006- 0647-4 DOI: 10.1007/s00253-006-0647-4.
dc.relation[33] Fang HHP et al. “Effect of pH on hydrogen production from glucose by a mixed culture”. Bioresource Technology. 2002; vol 82, pp. 87–93. 2007. Available: https://dx.doi.org/10.1016/S0960-8524(01)00110-9 DOI: 10.1016/S0960-8524(01)00110-9.
dc.relation[34] Ginkel SV et al. “Biohydrogen production as a function of pH and substrate concentration”. Environmental Science and Technology vol 35: pp. 4726–4730. 2001. Available: https://dx.doi.org/10.1021/es001979r DOI: 10.1021/es001979r.
dc.relation[35] Temudo MF et al. “Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study”. Biotechnology and Bioengineering vol 98, pp. 69–79. 2007. Available: http://dx.doi.org/10.1002/bit.21412 DOI: 10.1002/bit.21412.
dc.relation[36] Lin CY et al. “Fermentative hydrogen production from wastewaters: a review and prognosis”. International Journey of Hydrogen Energy. vol 37, pp. :15632–15642. 2012. Available: http://dx.doi.org/10.1016/j.ijhydene.2012.02.072 DOI: 10.1016/j.ijhydene.2012.02.072.
dc.relation[37] Chen CC et al. “Fermentative hydrogen production at high sulfate concentration”. International Journey of Hydrogen Energy. vol 33, pp. :1573–1578. 2008. Available: http://dx.doi.org/10.1016/j.ijhydene.2007.09.042 DOI: 10.1016/j.ijhydene.2007.09.042.
dc.relation[38] Wu SY et al. “Hydrogen production with immobilized sewage sludge in three phase fluidized bed bioreactors”. Biotechnology Progress. vol. 19, pp. 828–832. 2003. Available: http://dx.doi.org/10.1021/bp0201354 DOI: 10.1021/bp0201354.
dc.relation[39] Zhu J et al. “Swine manure fermentation for hydrogen production. Bioresource Technology vol 100, pp. 5472–54727. 2009. Available: http://dx.doi.org/10. 1016/j.biortech.2008.11.045 DOI: 10. 1016/j.biortech.2008.11.045.
dc.relation[40] Zahedi S et al. “Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste”. Bioresource Technology. 2013. vol 129, pp. 85–91. Available: http://dx.doi.org/10.1016/j.biortech.2012.11.003 DOI: 10.1016/j.biortech.2012.11.003.
dc.relation[41] Massanet-Nicolau J et al. “Production of hydrogen from sewage biosolids in a continuously fed bioreactor: effect of hydraulic retention time and sparging”. International Journey of Hydrogen Energy. 2010. Available: http://dx.doi.org/10.1016/j.ijhydene.2009.10.076 DOI: 10.1016/j.ijhydene.2009.10.076.
dc.relation[42] Mandal B, et al. “Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae”. Biotechnology Letters vol 28, pp. 831–835. 2006. http://dx.doi.org/10.1007/s10529-006-9008-8 DOI: 10.1007/s10529-006-9008-8.
dc.relation[43] Prabakar et al, "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews., vol. 96, pp. 306-324, 2018. Available: https://doi.org/10.1016/j.rser.2018.08.006 DOI: 10.1016/j.rser.2018.08.006.
dc.relation[44] Linder, T. “Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system”. Food Security Journal., vol. 11, pp. 265–278, 2019. Available: https://doi.org/10.1007/s12571-019-00912-3 DOI: 10.1007/s12571-019- 00912-3.
dc.relation[45] R. Rafieenia et al. "Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition," Bioresource Technology, vol. 267, pp. 445-457, 2018. Available: http://dx.doi.org/10.1016/j.biortech.2018.07.054 . DOI: 10.1016/j.biortech.2018.07.054.
dc.relation[46] F. D. Faloye, et al. "Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique – Semi pilot scale production assessment," International Journal of Hydrogen Energy, vol. 39, (11), pp. 5607-5616, 2014. Available: http://dx.doi.org/10.1016/j.ijhydene.2014.01.163 . DOI: 10.1016/j.ijhydene.2014.01.163.
dc.relation[47] Kitashima, M. et al. “Flexible plastic bioreactors for photobiological hydrogen production by hydrogenase-deficient cyanobacteria”. Bioscience, biotechnology and biochemistry., vol. 76, pp. 831-833, 2012. Available: https://doi.org/10.1271/bbb.110808 DOI: 10.1271/bbb.110808
dc.relation[48] Instituto Colombiano Agropecuario – ICA. “Censo Pecuario Nacional” [Online]. Available: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo- 2018.aspx.
dc.relation[49] Agronet. “Café: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Caf%C3%A9.pdf.
dc.relation[50] Agronet. “Cacao: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Cacao.pdf
dc.relation[51] A. P. Becerra-Quiróz, et al. “Sostenibilidad del aprovechamiento del bagazo de caña de azúcar en el Valle del Cauca, Colombia”, Ingeniería Solidaria, vol. 12, n.° 20, pp. 133-149, oct. 2016. Available: http://dx.doi.org/10.16925/in.v12i20.1548 DOI: 10.16925/in.v12i20.1548
dc.relation[52] C. J. Rangel Villegas, "Evaluación de un esquema de biorefinería mediante fermentación oscura a partir de biomasa residual de Santander". Universidad EAN, Bogotá D.C., 2021.
dc.relation[53] E. Cerdá, “Cambio climático y energía: Una visión a nivel global”, Papeles de Europa, vol. I, no 31, pp. 1-17, 2018. Available: https://doi.org/10.5209/PADE.61486 DOI: 10.5209/PADE.61486.
dc.relation[54] B. Paul, et al, "Primacy of ecological engineering tools for combating eutrophication: An ecohydrological assessment pathway," Science of The Total Environment, vol. 762, pp. 143171, 2021. Available: https://doi.org/10.1016/j.scitotenv.2020.143171 DOI: 10.1016/j.scitotenv.2020.143171
dc.relation[55] Environmental Protection Agency, “Effects of the Acid Rain” EPA, 4 Mayo 2020. [Online]. Available: https://www.epa.gov/acidrain/effects-acid-rain
dc.relation[56] Ministerio de Ciencia - España, “Impactos ambientales de la producción de electricidad”, [Online]. Available: http://proyectoislarenovable.iter.es/wp- content/uploads/2014/05/17_Estudio_Impactos_MA_mix_electrico_APPA.pdf
dc.relation[57] B. Khoshnevisan et al, "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, vol. 117, pp. 109493, 2020. Available: https://doi.org/10.1016/j.rser.2019.109493 DOI: 10.1016/j.rser.2019.109493
dc.relation[58] F. Gorini et al, "Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas," Sci. Total Environ., vol. 743, pp. 140818, 2020. Available: https://doi.org/10.1016/j.scitotenv.2020.140818 DOI: 10.1016/j.scitotenv.2020.140818
dc.relation[59] J. Du et al, "Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: A microcosm study with artificial reconstituted fresh water," Ecotoxicology and Environmental Safety, vol. 196, pp. 110535, 2020. Available: https://doi.org/10.1016/j.ecoenv.2020.110535 DOI: /10.1016/j.ecoenv.2020.110535.
dc.relation[60] J. P. Riffo Rivas, "Análisis de ciclo de vida para una planta de tratamiento de aguas residuales: Potencial de calentamiento global generado por PTAR Talagante", Universidad de Chile, Santiago de Chile, 2017. Available: http://repositorio.uchile.cl/handle/2250/148239
dc.relation[61] M. Davis et al, "Assessment of renewable energy transition pathways for a fossil fuel- dependent electricity-producing jurisdiction," Energy for Sustainable Development, vol. 59, pp. 243-261, 2020. Available: https://doi.org/10.1016/j.esd.2020.10.011 DOI: 10.1016/j.esd.2020.10.011.
dc.relation[62] Y. Liu et al, "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable & Sustainable Energy Reviews, vol. 139, pp. 110716, 2021. Available: http://dx.doi.org/10.1016/j.rser.2021.110716 DOI: 10.1016/j.rser.2021.110716.
dc.relation[63] S. Prasad et al, "Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective," Bioresource Technology, vol. 303, (C), pp. 122964, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122964 DOI: 10.1016/j.biortech.2020.122964.
dc.relation[64] A. Patel et al, "Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review," Bioresource Technology., vol. 321, pp. 124457, 2021. Available: https://doi.org/10.1016/j.biortech.2020.124457 DOI: 10.1016/j.biortech.2020.124457.
dc.relation[65] Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. “Life cycle assessment”. Springer International Publishing, 2018. Available: https://doi. org/10.1007/978-3-319-56475-3 DOI: 10.1007/978-3-319-56475-3.
dc.relation[66] Haya, E. “Análisis de ciclo de vida”. Escuela de Organización Industrial. España, 2016.
dc.relation[67] Antón Vallejo, M. A. “Utilización del Análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo”. Universitat Politècnica de Catalunya, 2004. Available: http://hdl.handle.net/2117/94137
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleEvaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala


Este ítem pertenece a la siguiente institución