dc.contributorCamargo García, Hernando Alberto
dc.contributorHenao Martínez, José Antonio
dc.contributorHernández Celi, Inés
dc.creatorRosas Rueda, Cristian Camilo
dc.date.accessioned2019-07-09T21:30:23Z
dc.date.available2019-07-09T21:30:23Z
dc.date.created2019-07-09T21:30:23Z
dc.date.issued2019-07-08
dc.identifierRosas Rueda, C. C. (2019). Síntesis de compuestos de Cu (II) y Zn (II) y evaluación de la actividad fungistática contra Botrytis cinere DMS 5144; y Fusarium sp [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/17562
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe synthesis of new materials with antifungal properties, of wide interest at agroindustrial and pharmaceutical areas due to the multiple resistances that the fungi present to the chemical control currently offered in the market. As a support strategy for this problematic situation, it is proposed to carry out various organic tests of Schiff base compounds, as ligands in coordination compounds with sales of copper (II) and zinc (II). The success of the synthesis processes can be verified by molecular characteristics using several instrumental analytical techniques such as: Infrared Spectroscopy (IR), Mass Spectrometry (MS), Nuclear Magnetic Resonance (NMR) and Visible Ultraviolet (UV-Vis), crystallographic characterization by Diffraction of X-ray powder, structural characterization by study of monocrystals. Finally, the following were evaluated as possible fungistic agents on the strains of phytopathogenic interest in the region and the country as: Botrytis cinerea DMS 5144; main causative agent of gray mold in fruits and Fusarium sp; causal agent of anthracnose and rotting of vegetables and fruits.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ciencias y Tecnologías Ambientales
dc.publisherFacultad de Química Ambiental
dc.relationAbdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. a E., Abu-Dief, A. M., & Lashin, F. E.-D. (2013). Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 111, 266–276. http://doi.org/10.1016/j.saa.2013.03.061
dc.relationAgathokleous, E., Kitao, M., & Calabrese, E. J. (2018). Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. Environmental Research, 165(April), 274–278. http://doi.org/10.1016/j.envres.2018.04.034
dc.relationAl-Hetar, M. Y., Zainal Abidin, M. A., & Wong, M. Y. (2007). Antifungal Activity of Chitosan against Fusarium oxysporum f. sp. cubense. Polymers and Polymer Composites, 21(7), 449–456. http://doi.org/10.1002/app
dc.relationAmiri Rudbari, H., Iravani, M. R., Moazam, V., Askari, B., Khorshidifard, M., Habibi, N., & Bruno, G. (2016). Synthesis, characterization, X-ray crystal structures and antibacterial activities of Schiff base ligands derived from allylamine and their vanadium(IV), cobalt(III), nickel(II), copper(II), zinc(II) and palladium(II) complexes. Journal of Molecular Structure, 1125(Iv), 113–120. http://doi.org/10.1016/j.molstruc.2016.06.055
dc.relationAnsari, I. a, Sama, F., Raizada, M., Shahid, M., Kant, R., & Siddiqi, Z. a. (2017). Synthesis and spectral characterization of 2- (( 2-hydroxybenzylidene ) amino ) -2-methylpropane-1 , 3-diol derived complexes : Molecular docking and antimicrobial studies. Journal of Molecular Structure, 1127. http://doi.org/10.1016/j.molstruc.2016.07.079
dc.relationArevalo Peñaranda, E., Díaz Jiménez, A. L., Galindo Álvarez, J. R., & Rivero Cruz, R. M. (2011). Manejo fitosanitario del cultivo del mora (Rubus glaucus Benth) Medidas para la temporada invernal. Ica, 32.
dc.relationArias tauta, J. K., & Jerez Ramirez, A. del P. (2008). Elaboración de un atlas para la descripción macroscópicas y microscópica de hongos fitopatógenos de interés en especies de flores de corte cultivadas en la sabana de Bogotá.
dc.relationBabu, K., & Amutha, P. (2014). The new Cu ( II ) and Ni ( II ) complexes of schiff bases : Synthesis , characterization and antibacterial studies. Der Pharma Chemica, 6(1), 432–435. Bermúdez Polonio, J. (1981). Métodos de Difracción de Rayos-X. Principios y aplicaciones. Madrid: Ediciones Pirámide, S.A.
dc.relationCalabrese, E. J., & Blain, R. B. (2011). The hormesis database: The occurrence of hormetic dose responses in the toxicological literature. Regulatory Toxicology and Pharmacology, 61(1), 73–81. http://doi.org/10.1016/j.yrtph.2011.06.003
dc.relationCalvo-Garrido, C. (2014). Control de la podredumbre por Botrytis cinerea mediante la aplicación de Candida sake CPA-1 y otras estrategias alternativas a los fungicidas químicos en uva de vinificación Carlos Calvo Garrido. Universidad de Lleida.
dc.relationCantón, E., Martín, E., & Espinel, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos. Revista Iberoamericana de Micología, (15a–1), 24. Retrieved from http://www.guia.reviberoammicol.com/Capitulo15.pdf
dc.relationCapelo, A. G., & Roche, J. V. (2016). Universidad de Cuenca Facultad de Ciencias Agropecuarias Escuela de Ingeniería Agronómica. Tesis, I, 1–186.
dc.relationCarreño, A., Zúñiga, C., Páez-Hernández, D., Gacitúa, M., Polanco, R., Otero, C., … Fuentes, J. A. (2018). Study of the structure-bioactivity relationship of three new pyridine Schiff bases: Synthesis, spectral characterization, DFT calculations and biological assays. New Journal of Chemistry, 42(11), 8851–8863. http://doi.org/10.1039/c8nj00390d
dc.relationCervera, C. (2012). [Candidemia and invasive candidiasis in the adult: clinical forms and treatment]. Enfermedades Infecciosas Y Microbiología Clínica, 30(8), 483–91. http://doi.org/10.1016/j.eimc.2012.02.003
dc.relationDíaz, N. C., Barrera, M. J., & Garcés de granada, E. (1996). Contribución al control de Botrytis cinerea pers. en statice (limonium sinuatum mill) variedad midnight blue. Acta Biológica Colombiana, 3(2), 7–18.
dc.relationDong, C. (1998). No Title. Journal Applied Crystallography, 32.
dc.relationEspinel-Ingroff, A. (2008). Mecanismos de resistencia a los antifúngicos: levaduras y hongos filamentosos. Revista Iberoamericana de Micología, 25(2), 101–106. http://doi.org/10.1016/S1130-1406(08)70027-5
dc.relationEstupiñan, H., & Ossa, J. (2007). Efecto del agente causal de la marchitez vascular de la uchuva (Physalis peruviana L.) el hongo Fusarium oxysporum Schlecht, sobre algunas solanáceas y otras especies cultivadas afectadas por formas especiales del microoganismo, 89.
dc.relationFratemale, D., Giamperi, L., & Ricci, D. (2003). Chemical Composition and antifungal activity of essential oil obtained from in vitro plants of thymus mastichina L. Journal of Essential Oil Research, 15(4), 278–281. http://doi.org/10.1080/10412905.2003.9712142
dc.relationGómez Rodriguez, T. (2013). Caracterización de aislamientos de Botrytis cinerea de rosa en la Sabana de Bogotá, 88. http://doi.org/10.1007/s00299-010-0845-5
dc.relationGrove, G. (2015). Podredumbre por Botrytis en la uva para producción comercial en Washington :, 1–5.
dc.relationGungor, E., Celen, S., Azaz, D., & Kara, H. (2012). Two tridentate Schiff base ligands and their mononuclear cobalt (III) complexes: Synthesis, characterization, antibacterial and antifungal activities. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 94, 216–21. http://doi.org/10.1016/j.saa.2012.03.034
dc.relationGuo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wanga, L., & Li, P. (2007). Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydrate Research, 342(10), 1329–1332. http://doi.org/10.1016/j.carres.2007.04.006
dc.relationIftikhar, B., Javed, K., Khan, M. S. U., Akhter, Z., Mirza, B., & Mckee, V. (2018). Synthesis, characterization and biological assay of Salicylaldehyde Schiff base Cu(II) complexes and their precursors. Journal of Molecular Structure, 1155, 337–348. http://doi.org/10.1016/j.molstruc.2017.11.022
dc.relationInstituto Colombiano Agropecuario. (2012). Manejo fitosanitario del cultivo de hortalizas.
dc.relationJean, L., & Bochu, B. (1992). CHEKCELL: LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d’Hères.
dc.relationKaitner, B., & Zbačnik, M. (2012). Solvent-free Mechanosynthesis of Two Thermochromic Schiff Bases. Acta Chim. Slov, 59, 670–679.
dc.relationKeypour, H., Shayesteh, M., Sharifi-Rad, A., Salehzadeh, S., Khavasi, H., & Valencia, L. (2008). Synthesis and characterization of copper(II) and cobalt(II) complexes with two new potentially hexadentate Schiff base ligands. X-ray crystal structure determination of one copper(II) complex. Journal of Organometallic Chemistry, 693(19), 3179–3187. http://doi.org/10.1016/j.jorganchem.2008.07.012
dc.relationKhoo, T.-J., Break, M. K. Bin, Crouse, K. a., Tahir, M. I. M., Ali, A. M., Cowley, A. R., … Tarafder, M. T. H. (2014). Synthesis, characterization and biological activity of two Schiff base ligands and their nickel(II), copper(II), zinc(II) and cadmium(II) complexes derived from S-4-picolyldithiocarbazate and X-ray crystal structure of cadmium(II) complex derived from pyr. Inorganica Chimica Acta, 413, 68–76. http://doi.org/10.1016/j.ica.2014.01.001
dc.relationKursunlu, A. N., Guler, E., Sevgi, F., & Ozkalp, B. (2013). Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde. Journal of Molecular Structure, 1048, 476–481. http://doi.org/10.1016/j.molstruc.2013.06.017
dc.relationLöuer, D., & Boultif, A. (2004). No Title. Journal Applied Crystallography, 24, 987 – 993.
dc.relationManssouri, M., Znini, M., El Harrak, A., & Majidi, L. (2016). Antifungal activity of essential oil from the fruits of Ammodaucus leucotrichus Coss. & Dur., in liquid and vapour phase against postharvest phytopathogenic fungi in apples. Journal of Applied Pharmaceutical Science, 6(5), 131–136. http://doi.org/10.7324/JAPS.2016.60520
dc.relationMiguell, A. D., Hubbard, C. R., & Stalick, J. K. (1991). NBS*AIDS83: A Fortran program for crystallographic data evaluation (No. 1141).
dc.relationMinisterio de Agricultura y Ganaderia de Costa Rica. (2017a). Proyecto de resolucion N° 004-2017-NR-SFE, 1–10. Retrieved from http://www.albayan.ae
dc.relationMinisterio de Agricultura y Ganaderia de Costa Rica. (2017b). Servicio Fitosanitario del Estado. Boletin N°83 Noviembre-Diciembre 2017. Actiualidad Fitosanitaria, (83).
dc.relationMohapatra, R. K., Sarangi, A. K., Azam, M., El-ajaily, M. M., Kudrat-E-Zahan, M., Patjoshi, S. B., & Dash, D. C. (2019). Synthesis, structural investigations, DFT, molecular docking and antifungal studies of transition metal complexes with benzothiazole based Schiff base ligands. Journal of Molecular Structure, 1179, 65–75. http://doi.org/10.1016/j.molstruc.2018.10.070
dc.relationMounika, K., Pragathi, a., & Gyanakumari, C. (2010). Synthesis¸ Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes. Journal of Scientific Research, 2, 513. http://doi.org/10.3329/jsr.v2i3.4899
dc.relationNudelman, N. (2004). Química Verde o Sustentable. In Química Verde o Sustentable (p. 8). Santa fé, Argentina.
dc.relationPan, Z.-H., Zhao, G.-Q., Xue, L.-W., & Yang, W.-C. (2016). Synthesis, Crystal Structure, and Antimicrobial Activity of Manganese(III) and Iron(III) Complexes Derived from Similar bis-Schiff Bases. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46(June), 1759–1764. http://doi.org/10.1080/15533174.2015.1137068
dc.relationPontón, J., & Quindós, G. (2006). Mecanismos de resistencia a la terapéutica antifúngica. Medicina Clínica, 126, 56–60. http://doi.org/10.1157/13097528
dc.relationQin, J., Xia, Z., Zhang, Y., Niu, F., You, Z., & Zhu, H. (2016). Syntheses , Characterization , and Crystal Structures of Schiff Base Zinc ( II ) Complexes with Tetrahedral Coordination. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 3174(June). http://doi.org/10.1080/15533174.2015.1137065
dc.relationRahman, M. H., Hjeljord, L. G., Aam, B. B., Sørlie, M., & Tronsmo, A. (2014). Antifungal effect of chito-oligosaccharides with different degrees of polymerization. European Journal of Plant Pathology, 141(1), 147–158. http://doi.org/10.1007/s10658-014-0533-3
dc.relationRetana, K., Adolfo Ramírez-Coché, J., Castro, O., & Blanco-Meneses, M. (2018). CARACTERIZACIÓN MORFOLÓGICA Y MOLECULAR DE Fusarium oxysporum F. SP. Apii ASOCIADO A LA MARCHITEZ DEL APIO EN COSTA RICA. Agronomía Costarricense, 42(1), 115–126. Retrieved from www.mag.go.cr/revagr/index.htmlwww.cia.ucr.ac.cr
dc.relationRevenga Parra, M. (2009). Síntesis y caracterización de ligandos hidroxilados de base de schiff. aplicación al desarrollo de sensores y biosensores. Universidad Autónoma de Madrid.
dc.relationRodríguez Ramírez, L. B. (2009). SÍNTESIS, CARACTERIZACIÓN Y ACTIVIDAD ANTIBACTERIANA DE COMPLEJOS METÁLICOS CON BASES DE SCHIFF QUE CONTIENEN CEFRADINA. UNIVERSIDAD DE ORIENTE NÚCLEO DE SUCRE.
dc.relationRubinson, K., & Rubinson, J. (2001). Análisis Instrumental. Madrid: Prentice Hall.
dc.relationSachdeva, H., Saroj, R., Khaturia, S., Dwivedi, D., & Prakash Chauhan, O. (2014). Green route for efficient synthesis of novel amino acid schiff bases as potent antibacterial and antifungal agents and evaluation of cytotoxic effects. Journal of Chemistry, 2014. http://doi.org/10.1155/2014/848543
dc.relationSaggiomo, V., & Lüning, U. (2009). On the formation of imines in water—a comparison. Tetrahedron Letters, 50(32), 4663–4665. http://doi.org/10.1016/j.tetlet.2009.05.117
dc.relationSalehi, M., Amoozadeh, A., Salamatmanesh, A., Kubicki, M., Dutkiewicz, G., Samiee, S., & Khaleghian, A. (2015). Synthesis, characterization, crystal structures, computational studies, and antibacterial activities of two new Schiff bases derived from isophthalaldehyde. Journal of Molecular Structure, 1091, 81–87. http://doi.org/10.1016/j.molstruc.2015.02.060
dc.relationSandoval-chávez, R. A., Martínez-peniche, R. Á., Hernández-iturriaga, M., & Fernández-escartín, E. (2011). Control Biológico y Químico contra Fusarium stilboides en pimiento morrón ( Capsicum annuum L.) en poscosecha. Chapingo Serie Horticultura, 17(2), 161–172.
dc.relationSkoog, D. a., Holler, F. J., & Nieman, T. a. (2001). Análisis Instrumental. Journal of Chemical Information and Modeling.
dc.relationSuresh, R., Kamalakkannan, D., Ranganathan, K., Arulkumaran, R., Sundararajan, R., Sakthinathan, S. P., … Thirunarayanan, G. (2013). Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl imines. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 101, 239–248. http://doi.org/10.1016/j.saa.2012.09.039
dc.relationThakor, Y. J., Patel, S. G., & Patel, K. N. (2011). Synthesis, characterization and biocidal studies of Ni(II), Cu(II), Co(II), Fe(II), Mn(II) and Zn(II) complexes Containing tetra dentate and neutral bi dentate schiff base. Der Chemica Sinica, 2(1), 43–51.
dc.relationTigineh, G. T., Wen, Y. S., & Liu, L. K. (2015). Solvent-free mechanochemical conversion of 3-ethoxysalicylaldehyde and primary aromatic amines to corresponding Schiff-bases. Tetrahedron, 71(1), 170–175. http://doi.org/10.1016/j.tet.2014.10.074
dc.relationVásquez-Ramírez, L. M., & Castaño-Zapata, J. (2017). Manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (SACC.) W.C. Snyder & H.N. Hansen]: una revisión. Revista UDCA Actualidad & Divulgación Científica, 20(2), 363–374. Retrieved from http://www.scielo.org.co/pdf/rudca/v20n2/v20n2a14.pdf
dc.relationVázquez, R. A., Coreño, O., Veloz, M. A., Reyes, V. E., Martínez, M., Zamora, F., … Reyes., M. I. (2008). MECANOSÍNTESIS: SÍNTESIS EN ESTADO SÓLIDO DE COMPUESTOS ORGÁNICOS NITROGENADOS DE TIPO IMINA. Memorias Del V Encuentro de Participación de La Mujer En Las Ciencias, 1, 8–11. Retrieved from http://200.34.44.252/investigacion/icbi/LI_RecCorr/maria_veloz/S2-BYQ.pdf
dc.relationVillalobos Alvarez, C. A. (2006). Características morfológicas y patogénicas de aislamientos de Botrytis cinerea Pers. ex Fries desde arándano (Vaccinium corymbosum L. y Vaccinium virgatum Ait.) resistentes a benomilo, 90. http://doi.org/http://dx.doi.org/10.1016/S0735-1097(17)34146-3
dc.relationZárate Chinchilla, G. (2012). Análisis de sensibilidad de fungicidas utilizados en el combate de Botrytis cinerea in vitro e in vivo utilizando plántulas de tomate (Solanum lycopersicum), 69.
dc.relationZhang, X.-L. (2016). Copper(II) Complexes With Bis-Schiff Bases: Synthesis, Crystal Structures, and Antibacterial Activities. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46(May), 1848–1853. http://doi.org/10.1080/15533174.2015.1137069
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleSíntesis de Compuestos de Cu (II) y Zn (II) con ligandos Salen, caracterización estructural y evaluación de la actividad fungistática contra Botrytis cinérea DMS 5144; y Fusarium sp


Este ítem pertenece a la siguiente institución