dc.contributorSandoval Rincón, Mónica Viviana
dc.contributorSolano García, Nicolás Mauricio
dc.contributorCervantes Díaz, Martha
dc.contributorUniversidad Santo Tomás
dc.creatorPuentes García, Fernando
dc.creatorNoguera Llanos, Jhoan Sebastián
dc.date.accessioned2022-01-25T21:05:28Z
dc.date.available2022-01-25T21:05:28Z
dc.date.created2022-01-25T21:05:28Z
dc.date.issued2022-01-25
dc.identifierPuentes García, F. y Noguera Llanos, J. S. (2022). Evaluación del comportamiento del CO2 en espacios cerrados en presencia de plantas de la especie vegetal “lengua de suegra” (Sansevieria trifasciata) [Tesis de Pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/42596
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractResidents of urban areas stay around 80% of their time in indoor spaces, where air quality has a relevant influence on health and job performance; specifically, CO2 is recognized as an indicator pollutant of indoor air quality, and a good ventilation. The pursuit of excellence in indoor environments, with conditions that satisfy the occupants, and reduce the symptoms of diseases related to Sick Building Syndrome (SBS), has promoted research on the use of plants as biological filters to purify the air. The CO2 capture capacity by Sansevieria trifasciata, in a controlled system through a sealed chamber, was evaluated in this research. Total plant leaf area was calculated fortnightly for six months using image overlay, whose processing and digitalization was made with the AutoCAD® program, version 3.4.0.4. The CO2 absorption, temperature and humidity were tested within the test chamber at different light levels. With the set of data obtained for leaf area and perimeter, it was possible to determine the relative growth percentage over the sampled time, obtaining an average variation in leaf area of 10,95% and 7,20% for perimeter. Regarding CO2 absorption, a reduction of the initial concentration of 24,25% was achieved using S. trifasciata, during six hours under artificial light conditions of approximately 500 lux; however, in dark conditions and at 5922, 8825 and 10395 lux, an increase in the initial CO2 concentration was observed. Finally, based on the absorption results obtained, a model was proposed using an equation of order two, facilitating decision making regarding the applicability of this pollutant mitigation strategy in closed spaces with conditions like those studied.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relationAbdel-Salam, M. M. M. (2022). Relationship between residential indoor air quality and socioeconomic factors in two urban areas in Alexandria, Egypt. Building and Environment, 207. https://doi.org/10.1016/j.buildenv.2021.108425
dc.relationAlvares, J. (2021). Determinación de clorofila A como indicador de polución en los embalses de las hidroeléctricas Agoyán y Pisayambo por el método espectrofotométrico UV visible. https://repositorio.uta.edu.ec/handle/123456789/32081
dc.relationAmoozgar, A., Mohammadi, A., & Sabzalian, M. R. (2017). Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica, 55(1), 85–95. https://doi.org/10.1007/s11099-016-0216-8
dc.relationAndrade, J. L., de la Barrera, E., Reyes, C., Ricalde, M. F., Vargas, G., & Crevera, J. C. (2017). El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Botanical Sciences, 81, 37–50. https://doi.org/10.17129/botsci.1764
dc.relationAPHA. (1989). Standard Methods for the Examination of Water and Wastewater. APHA/ American Water Work Association/Water Environment Federation. Washington, D. C. Part 10200 H, 17ed.
dc.relationAydogan, A., & Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atmospheric Environment, 45(16), 2675–2682. https://doi.org/10.1016/j.atmosenv.2011.02.062
dc.relationAzcón-Bieto, J., Fleck, I., & Aranda, X. (n.d.). Fotosintesis, factores ambientales y cambio climático. Retrieved January 11, 2022, from www.ipcc.ch
dc.relationBelén, M. (2021). Partes del estoma. Técnica En Jardinería y Recursos Naturales y Paisajísticos. Ecología Verde. https://www.ecologiaverde.com/partes-del-estoma-3208.html
dc.relationBrauer, M., Casadei, B., Harrington, R. A., Kovacs, R., Sliwa, K., Brauer, M., Davaakhuu, N., Hadley, M., Kass, D., Miller, M., Consuelo Escamilla Nuñez, M., Prabhakaran, D., Su, T.-C., Vaartjes, I. C. H., & Vedanthan, R. (2021). Taking a Stand Against Air Pollution—The Impact on Cardiovascular Disease. Journal of the American College of Cardiology, 77(13). https://doi.org/10.1016/j.jacc.2020.12.003
dc.relationBravo, L., & Tomasini, C. (2017). Experiencias en la determinación de clorofila “a” y feopigmentos por espectrofotometría. 3er Congreso Nacional AMICA. http://repositorio.imta.mx/handle/20.500.12013/2115
dc.relationBrilli, F., Fares, S., Ghirardo, A., de Visser, P., Calatayud, V., Muñoz, A., Annesi-Maesano, I., Sebastiani, F., Alivernini, A., Varriale, V., & Menghini, F. (2018). Plants for Sustainable Improvement of Indoor Air Quality. Trends in Plant Science, 23(6), 507–512. https://doi.org/10.1016/J.TPLANTS.2018.03.004
dc.relationCaballero, M., Socorro, L., & Beatriz, O. (2007). Efecto invernadero , calentamiento global y cambio climático : una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10). http://www.revista.unam.mx/vol.8/num10/art78/int78.htm#a
dc.relationCalvo, J. F., & Castañeda, J. A. (2016). Análisis de la clorofila de spinacia oleracea y cuantificación de albumina de espagueti utilizando espectrofotometría. UGCiencia, 22(1). https://doi.org/10.18634/ugcj.22v.1i.597
dc.relationCao, Y., Li, F., Wang, Y., Yu, Y., Wang, Z., Liu, X., & Ding, K. (2019). Assisted deposition of PM2.5 from indoor air by ornamental potted plants. Sustainability (Switzerland), 11(9). https://doi.org/10.3390/su11092546
dc.relationCasierra, F., Ávila, O., & Riascos, D. (2012). Cambios diarios del contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra. Temas Agrarios, 17(1), 60–71. https://doi.org/10.21897/rta.v17i1.697
dc.relationCervera Herrera, J. C., Leirana-Alcocer, J. L., Navarro Alberto, J. A., Cervera Herrera, J. C., Leirana-Alcocer, J. L., & Navarro Alberto, J. A. (2018). Factores ambientales relacionados con la cobertura de Agave angustifolia (Asparagaceae) en el matorral costero de Yucatán, México. Acta Botánica Mexicana, 2018(124), 0–0. https://doi.org/10.21829/ABM124.2018.1252
dc.relationChipana, M. M., & Matos, N. (2020). Evaluación de las concentraciones de CO2 en interiores y su influencia en la salud de los estudiantes de la Universidad Peruana Unión. http://hdl.handle.net/20.500.12840/3196
dc.relationChoe, Y., Shin, J., Park, J., Kim, E., Oh, N., Min, K., Kim, D., Sung, K., Cho, M., & Yang, W. (2022). Inadequacy of air purifier for indoor air quality improvement in classrooms without external ventilation. Building and Environment, 207. https://doi.org/10.1016/j.buildenv.2021.108450
dc.relationCordero Rodríguez, S. (2003). Plantas De Metabolismo Fotosintético C-3, C-4 Y Cam. Spin Cero, 7, 121–128. http://exa.unne.edu.ar/biologia/fisiologia.vegetal/PlantasdemetabolismoC3yC4.pdf
dc.relationda Silva, J. E., & dos Santos, E. (2021). Factores abióticos sobre aspectos ecofisiológicos de Handroanthus impetiginosus y Handroanthus serratifolius. Bosque (Valdivia), 42(1), 121–129. https://doi.org/10.4067/s0717-92002021000100121
dc.relationDíaz, G. (2012). EL CAMBIO CLIMÁTICO. Ciencia y Sociedad, XXXVII(2), 227–240. https://www.redalyc.org/articulo.oa?id=87024179004
dc.relationDionova, B. W., Mohammed, M. N., Al-Zubaidi, S., & Yusuf, E. (2020). Environment indoor air quality assessment using fuzzy inference system. ICT Express, 6(3). https://doi.org/10.1016/j.icte.2020.05.007
dc.relationDirección General de Industria; Energía y Minas de la Comunidad de Madrid. (2016). Guía de Calidad del Aire Interior. Fenercom. https://www.fenercom.com/pdf/publicaciones/Guia_de_Calidad_del_Aire_Interior_fenercom_2016.pdf
dc.relationDugar, A. (n.d.). Lighting Green Walls-finding the optimum CCT and SPD of white LED light sources. Lighting Research & Design. Retrieved September 12, 2021, from https://2sz7fh20hqku3jnvjc3lxy6g-wpengine.netdna-ssl.com/wp-content/themes/xicato/documentuploads/Lighting%20Green%20Walls%20.pdf
dc.relationEPA. (2021). Cómo mejorar la calidad del aire de los interiores | US EPA. Agencia de Proteción Ambiental de Estados Unidos. https://espanol.epa.gov/cai/como-mejorar-la-calidad-del-aire-de-los-interiores
dc.relationFAO. (2013). Factores ambientales. 1–6. https://www.fao.org/3/x8234s/x8234s08.htm
dc.relationFermo, P., Artíñano, B., de Gennaro, G., Pantaleo, A. M., Parente, A., Battaglia, F., Colicino, E., di Tanna, G., Goncalves da Silva Junior, A., Pereira, I. G., Garcia, G. S., Garcia Goncalves, L. M., Comite, V., & Miani, A. (2021). Improving indoor air quality through an air purifier able to reduce aerosol particulate matter (PM) and volatile organic compounds (VOCs): Experimental results. Environmental Research, 197. https://doi.org/10.1016/j.envres.2021.111131
dc.relationFromme, H. (2019). Particulate Matter and Ultrafine Particles in Indoor Air. Encyclopedia of Environmental Health, 36–48. https://doi.org/10.1016/B978-0-12-409548-9.11243-6
dc.relationGarcía, M. P. (2017). Influencia de la lámina de agua aplicada y la frecuencia de riego; sobre la calidad y rendimiento del cultivo de sábila (Aloe vera (L.), Burm. F.) en la aldea Tierra Blanca, Guastatoya, el Progreso. http://www.repositorio.usac.edu.gt/id/eprint/8870
dc.relationGonzález-Martín, J., Kraakman, N. J. R., Pérez, C., Lebrero, R., & Muñoz, R. (2021). A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere, 262, 128376. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128376
dc.relationGreen, J., & Sánchez, S. (2013). La calidad del aire en América Latina: Una visión panorámica. Clean Air Institute. https://sinia.minam.gob.pe/documentos/calidad-aire-america-latina-una-vision-panoramica
dc.relationGuáqueta, S. D. (2019). Efectos de los factores climáticos de producción sobre la extracción de nitrógeno, calcio y potasio en cultivos de fresa (Fragaria ananassa Deuch cv Albión). https://repositorio.unal.edu.co/handle/unal/76090
dc.relationGuardino, X. (2011). Calidad del Aire Interior. Enciclopedioa de Salud y Seguridad En El Trabajo, 44, 44.2-44.6. https://www.insst.es/documents/94886/162520/Cap%C3%ADtulo+44.+Calidad+del+aire+interior
dc.relationGubb, C., Blanusa, T., Griffiths, A., & Pfrang, C. (2019). Interaction between plant species and substrate type in the removal of CO2 indoors. Air Quality, Atmosphere and Health, 12(10). https://doi.org/10.1007/s11869-019-00736-2
dc.relationHan, Y., Lee, J., Haiping, G., Kim, K. H., Wanxi, P., Bhardwaj, N., Oh, J. M., & Brown, R. J. C. (2022). Plant-based remediation of air pollution: A review. Journal of Environmental Management, 301, 113860. https://doi.org/10.1016/J.JENVMAN.2021.113860
dc.relationHernández, J. D., Espinosa, J. F., Peñaloza, E., Rodriguez, J. E., Chacon, J. G., Toloza, C., Arenas, M. K., Carrillo, S., & Bermudez, V. (2018). Sobre el uso adecuado del coeficiente de correlación de Pearson: definición, propiedades y suposiciones. Archivos Venezolanos de Farmacología y Terapéutica, 37, 587–601. https://www.redalyc.org/articulo.oa?id=55963207025
dc.relationHörmann, V., Brenske, K. R., & Ulrichs, C. (2017). Suitability of Test Chambers for Analyzing Air Pollutant Removal by Plants and Assessing Potential Indoor Air Purification. Water, Air, and Soil Pollution, 228(10), 1–13. https://doi.org/10.1007/s11270-017-3586-z
dc.relationIDEAM. (2019). Informe del estado de la Calidad del Aire en Colombia 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales.
dc.relationINTAGRI. (2018). Plantas C3, C4 Y CAM. Serie Nutrición Vegetal, 125(1), 5p.
dc.relationIrga, P. J., Pettit, T. J., & Torpy, F. R. (2018). The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Reviews in Environmental Science and Bio/Technology, 17(2), 395–415. https://doi.org/10.1007/s11157-018-9465-2
dc.relationIrga, P. J., Torpy, F. R., & Burchett, M. D. (2013). Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmospheric Environment, 77, 267–271. https://doi.org/10.1016/J.ATMOSENV.2013.04.078
dc.relationIstiadji, A. D., Satwiko, P., Suhodo, Y. P., Sekarlangit, N., Prasetya, A., & Silvia, I. (2020). The development of an organic air cleaner (OAC) to reduce CO2 level of air-conditioned rooms without fresh air supply. International Journal of Ventilation, 1–18. https://doi.org/10.1080/14733315.2020.1833518
dc.relationJeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie Und Physiologie Der Pflanzen, 167(2), 191–194. https://doi.org/10.1016/s0015-3796(17)30778-3
dc.relationJones, A. P. (2002). Chapter 3 Indoor air quality and health. Developments in Environmental Science, 1(C), 57–115. https://doi.org/10.1016/S1474-8177(02)80006-7
dc.relationKim, K. J., Kim, H. J., Khalekuzzaman, M., Yoo, E. H., Jung, H. H., & Jang, H. S. (2016). Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants. Environmental Science and Pollution Research, 23(7), 6149–6148. https://doi.org/10.1007/s11356-016-6065-y
dc.relationLee, J., & Kang, H. (2015). The Effect of Improving Indoor Air Quality using some C3 Plants and CAM Plants. Indian Journal of Science and Technology, 8(26). https://doi.org/10.17485/ijst/2015/v8i26/80693
dc.relationLewin, W. (2016). Dispersión Rayleigh Español . GeoLab PyGIS. https://geolabpygis.wordpress.com/2017/03/20/walter-lewin-dispersion-rayleigh-espanol/
dc.relationLi, C., & Managi, S. (2022). Spatial Variability of the Relationship between Air Pollution and Well-being. Sustainable Cities and Society, 76. https://doi.org/10.1016/j.scs.2021.103447
dc.relationLin, M. W., Chen, L. Y., & Chuah, Y. K. (2017). Investigation of a potted plant (Hedera helix) with photo-regulation to remove volatile formaldehyde for improving indoor air quality. Aerosol and Air Quality Research, 17(10). https://doi.org/10.4209/aaqr.2017.04.0145
dc.relationLiu, G., Xiao, M., Zhang, X., Gal, C., Chen, X., Liu, L., Pan, S., Wu, J., Tang, L., & Clements-Croome, D. (2017). A review of air filtration technologies for sustainable and healthy building ventilation. Sustainable Cities and Society, 32, 375–396. https://doi.org/10.1016/J.SCS.2017.04.011
dc.relationMarín, J. G. (2009). Factores que afectan el crecimiento de las plantas. Instituto Colombiano Agropecuario. https://repository.agrosavia.co/handle/20.500.12324/22033
dc.relationMcIntosh, A., & Pontius, J. (2017). Air Quality and Atmospheric Science. Case Studies for Integrating Science and the Global Environment, 255–359. https://doi.org/10.1016/B978-0-12-801712-8.00003-2
dc.relationMentese, S., Mirici, N. A., Elbir, T., Palaz, E., Mumcuoğlu, D. T., Cotuker, O., Bakar, C., Oymak, S., & Otkun, M. T. (2020). A long-term multi-parametric monitoring study: Indoor air quality (IAQ) and the sources of the pollutants, prevalence of sick building syndrome (SBS) symptoms, and respiratory health indicators. Atmospheric Pollution Research, 11(12), 2270–2281. https://doi.org/10.1016/j.apr.2020.07.016
dc.relationMinisterio de Minas y Energía. (2010). Resolución No. 180540 . Ministerio de Minas y Energía. Republica de Colombia. https://www.minenergia.gov.co/documents/10180/23517/20729-7853.pdf
dc.relationMohamed, S., Rodrigues, L., Omer, S., & Calautit, J. (2021). Overheating and indoor air quality in primary schools in the UK. Energy and Buildings, 250. https://doi.org/10.1016/j.enbuild.2021.111291
dc.relationMota, C., Alcaraz, C., Iglesias, M., & Carvajal, M. (2017). INVESTIGACION SOBRE LA ABSORCIÓN DE CO2 POR LOS CULTIVOS MÁS REPRESENTATIVOS DE LA REGIÓN DE MURCIA. http://www.lessco2.es/pdfs/noticias/ponencia_cisc_espanol.pdf
dc.relationNederhoff, E. (2009). Air humidity, stomata & transpiration. Practical Hydroponics & Greenhouses , 37.
dc.relationOgburn, R. M., & Edwards, E. J. (2010). The Ecological Water-Use Strategies of Succulent Plants. Advances in Botanical Research, 55(C), 179–225. https://doi.org/10.1016/B978-0-12-380868-4.00004-1
dc.relationOh, H.-J., Nam, I.-S., Yun, H., Kim, J., Yang, J., & Sohn, J.-R. (2014). Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Building and Environment, 82, 203–214. https://doi.org/10.1016/j.buildenv.2014.08.019
dc.relationOrtega, L., Sánchez, J., Díaz, R., & Ocampo, J. (2010). Efecto de diferentes sustratos en el crecimiento de las plántulas de tomate. Ra Ximhai, 6(3), 365–372.
dc.relationOrtiz, J. D., & Jackson, R. (2020). Understanding Eunice Foote’s 1856 experiments: heat absorption by atmospheric gases. Notes and Records: The Royal Society Journal of the History of Science. https://doi.org/10.1098/rsnr.2020.0031
dc.relationOSMAN. (n.d.). Informe Calidad del aire interior. Observatorio de Salud y Medio Ambiente de Andalucía. Retrieved November 21, 2021, from https://www.diba.cat/c/document_library/get_file?uuid=c7389bc9-6b7b-4711-bdec-3ead4bc9a68b&groupId=7294824
dc.relationPamonpol, K., Areerob, T., & Prueksakorn, K. (2020). Indoor Air Quality Improvement by Simple Ventilated Practice and Sansevieria Trifasciata. Atmosphere 2020, Vol. 11, Page 271, 11(3), 271. https://doi.org/10.3390/ATMOS11030271
dc.relationPandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., Turkgulu, B., Kumar, G. A., Khare, M., Beig, G., Gupta, T., Krishnankutty, R. P., Causey, K., Cohen, A. J., Bhargava, S., Aggarwal, A. N., Agrawal, A., Awasthi, S., Bennitt, F., … Dandona, L. (2021). Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019. The Lancet Planetary Health, 5(1). https://doi.org/10.1016/S2542-5196(20)30298-9
dc.relationPanyametheekul, S., Rattanapun, T., Morris, J., & Ongwandee, M. (2019). Foliage houseplant responses to low formaldehyde levels. Building and Environment, 147, 67–76. https://doi.org/10.1016/j.buildenv.2018.09.053
dc.relationPanyametheekul, S., Rattanapun, T., & Ongwandee, M. (2018). Ability of artificial and live houseplants to capture indoor particulate matter. Indoor and Built Environment, 27(1), 121–128. https://doi.org/10.1177/1420326X16671016
dc.relationParseh, I., Teiri, H., Hajizadeh, Y., & Ebrahimpour, K. (2018). Phytoremediation of benzene vapors from indoor air by Schefflera arboricola and Spathiphyllum wallisii plants. Atmospheric Pollution Research, 9(6), 1083–1087. https://doi.org/10.1016/j.apr.2018.04.005
dc.relationPaterson, P. (2017). Calentamiento global y cambio climático en Sudamérica. Revista Política y Estrategia, 130, 153–188. https://doi.org/10.26797/rpye.v0i130.133
dc.relationPérez-Urrestarazu, L., Fernández-Cañero, R., Franco-Salas, A., & Egea, G. (2015). Vertical Greening Systems and Sustainable Cities. Journal of Urban Technology, 22(4), 65–85. https://doi.org/10.1080/10630732.2015.1073900
dc.relationPérez, U., & Carril, E. (2009). Fotosíntesis: Aspectos Básicos. Reduca (Biología), 2(3), 1–47.
dc.relationPettit, T., Irga, P. J., & Torpy, F. R. (2018). Towards practical indoor air phytoremediation: A review. Chemosphere, 208, 960–974. https://doi.org/10.1016/j.chemosphere.2018.06.048
dc.relationPheomphun, P., Treesubsuntorn, C., & Thiravetyan, P. (2019). Effect of exogenous catechin on alleviating O3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. Ecotoxicology and Environmental Safety, 180, 374–383. https://doi.org/10.1016/J.ECOENV.2019.05.002
dc.relationPlaceres, M. R., Olite, F. D., & Toste, M. Á. (2006). La contaminación del aire: Su repercusión como problema de salud. In Revista Cubana de Higiene y Epidemiologia (Vol. 44, Issue 2).
dc.relationQuerol, X. (2008). Calidad del aire, partículas en suspensión y metales. In Revista Espanola de Salud Publica (Vol. 82, Issue 5, pp. 447–454). https://doi.org/10.1590/s1135-57272008000500001
dc.relationQuispe, A. O. (2020). Calidad de aire en interiores por dióxido de carbono y su relación con la ventilación de las oficinas de la Municipalidad Provincial de Tocache. http://hdl.handle.net/20.500.12840/4235
dc.relationRetolaza, F. (2017). SISTEMATIZACIÓN DEL PROCESO PRODUCTIVO DE CURARINA (Sansevieria trifasciata Prain) EN EL PARCELAMIENTO CUYUTA, MASAGUA, ESCUINTLA, GUATEMALA, C. A., PERIODO 2012-2016. http://www.repositorio.usac.edu.gt/8342/1/RetolazaEstradaFreddyGiovanni.pdf
dc.relationRuiz, M. (2014). Variación de la fotosíntesis CAM en dos especies de Agave por el desarrollo y el ambiente. https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/3457
dc.relationRwawiire, S., & Tomkova, B. (2015). Morphological, Thermal, and Mechanical Characterization of Sansevieria trifasciata Fibers. Journal of Natural Fibers, 12(3), 201–210. https://doi.org/10.1080/15440478.2014.914006
dc.relationSabater, F. (1978). La luz como factor ambiental para las plantas. Anales de La Universidad de Murcia. Ciencias, 31(1977).
dc.relationSalinas, H. (2017). Caracterización de las respuestas del metabolismo fotosintético CAM (Metabolismo Ácido de las Crasuláceas) a la temperatura, radiación solar y estres hídrico en Agave cupreata (Trel. & Berger). http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/1907
dc.relationSatish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., & Fisk, W. J. (2012). Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environmental Health Perspectives, 120(12), 1671–1677. https://doi.org/10.1289/ehp.1104789
dc.relationSato, T., Shimoda, Y., Matsuda, K., Tanaka, A., & Ito, H. (2018). Mg-dechelation of chlorophyll a by Stay-Green activates chlorophyll b degradation through expressing Non-Yellow Coloring 1 in Arabidopsis thaliana. Journal of Plant Physiology, 222, 94–102. https://doi.org/10.1016/J.JPLPH.2018.01.010
dc.relationSerrano, P. (2020). ¿Qué es la Calidad del Aire Interior (CAI)? . Calor y Frio. https://www.caloryfrio.com/construccion-sostenible/ventilacion-y-calidad-aire-interior/que-es-la-calidad-del-aire-interior-cai.html#top
dc.relationSetsungnern, A., Treesubsuntorn, C., & Thiravetyan, P. (2017). The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum. Plant Physiology and Biochemistry, 120, 95–102. https://doi.org/10.1016/j.plaphy.2017.09.021
dc.relationSoreanu, G., Dixon, M., & Darlington, A. (2013). Botanical biofiltration of indoor gaseous pollutants – A mini-review. Chemical Engineering Journal, 229, 585–594. https://doi.org/10.1016/J.CEJ.2013.06.074
dc.relationSqueo F. A. y M.F. León. 2007. Transpiración. En Squeo F.A. y L. Cardemil (eds). Fisiología vegetal. Ediciones Universidad de La Serena, Chile.
dc.relationSriprapat, W., Suksabye, P., Areephak, S., Klantup, P., Waraha, A., Sawattan, A., & Thiravetyan, P. (2014). Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants. Ecotoxicology and Environmental Safety, 102(1), 147–151. https://doi.org/10.1016/j.ecoenv.2014.01.032
dc.relationSriprapat, W., & Thiravetyan, P. (2013). Phytoremediation of BTEX from indoor air by zamioculcas zamiifolia. Water, Air, and Soil Pollution, 224(3). https://doi.org/10.1007/s11270-013-1482-8
dc.relationSu, Y. M., & Lin, C. H. (2015). Removal of indoor carbon dioxide and formaldehyde using green walls by bird nest fern. Horticulture Journal, 84(1), 69–76. https://doi.org/10.2503/hortj.CH-114
dc.relationSuhaimi, M. M., Leman, A. M., Hariri, A., Rahman, K. A., Yusof, M. Z. M., & Afandi, A. (2016). Profiling of Indoor Plant to Deteriorate Carbon Dioxide Using Low Light Intensity. MATEC Web of Conferences, 78. https://doi.org/10.1051/matecconf/20167801011
dc.relationSuhaimi, M. M., Leman, A. M., & Safii, H. (2016). Indoor plants as agents deterioration of gas pollutions. ARPN Journal of Engineering and Applied Sciences, 11(18), 10944–10949. http://www.arpnjournals.com/
dc.relationTeiri, H., Pourzamani, H., & Hajizadeh, Y. (2018). Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere, 197, 375–381. https://doi.org/10.1016/j.chemosphere.2018.01.078
dc.relationThach, T. Q., Mahirah, D., Dunleavy, G., Nazeha, N., Zhang, Y., Tan, C. E. H., Roberts, A. C., Christopoulos, G., Soh, C. K., & Car, J. (2019). Prevalence of sick building syndrome and its association with perceived indoor environmental quality in an Asian multi-ethnic working population. Building and Environment, 166, 106420. https://doi.org/10.1016/J.BUILDENV.2019.106420
dc.relationTian, L., Meng, Q., Wang, L., Dong, J., & Wu, H. (2015). Research on the Effect of Electrical Signals on Growth of Sansevieria under Light-Emitting Diode (LED) Lighting Environment. PLoS ONE, 10(6), 1–18. https://doi.org/10.1371/journal.pone.0131838
dc.relationTorpy, F. R., Irga, P. J., & Burchett, M. D. (2014). Profiling indoor plants for the amelioration of high CO2 concentrations. Urban Forestry and Urban Greening, 13(2), 227–233. https://doi.org/10.1016/j.ufug.2013.12.004
dc.relationTorpy, F., Zavattaro, M., & Irga, P. (2017). Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO2 concentrations. Air Quality, Atmosphere and Health, 10(5), 575–585. https://doi.org/10.1007/s11869-016-0452-x
dc.relationTreesubsuntorn, C., & Thiravetyan, P. (2018). Botanical biofilter for indoor toluene removal and reduction of carbon dioxide emission under low light intensity by using mixed C3 and CAM plants. Journal of Cleaner Production, 194, 94–100. https://doi.org/10.1016/j.jclepro.2018.05.141
dc.relationUllah, H., Treesubsuntorn, C., & Thiravetyan, P. (2021). Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO2 emission. Environmental Science and Pollution Research, 28(1), 538–546. https://doi.org/10.1007/s11356-020-10342-w
dc.relationVallejo, W. A., Diaz, C., Alvis, M., Cantillo, A., & Fajardo, C. (2018). Methylene blue degradation under visible irradiation on TiO2 electrodes sensitized by dye chlorophyll extract from Spinacia Olera/Degradación de azul de metileno bajo irradiación visible sobre electrodos de TiO2 sensibilizados con pigmentos de clorofila.. Prospectiva, 16(2), 7–12. https://doi.org/10.15665/rp.v16i2.1455
dc.relationVallero, D. (2014). Air Pollutant Hazards. Fundamentals of Air Pollution, 197–214. https://doi.org/10.1016/B978-0-12-401733-7.00007-4
dc.relationVanegas, M. E. (2011). Calidad del aire y sus efectos en la salud humana. CEGESTI-Éxito Empresarial, 149(149).
dc.relationVargas, F., & Gallego, I. (2005). Calidad ambiental interior: bienestar, confort y salud. Revista Española de Salud Pública, 79(2), 243–251. https://doi.org/10.1590/s1135-57272005000200011
dc.relationWai, T. K., & Willem, H. C. (2011). Perceptions and Physiological Responses to Indoor Air Quality. In Encyclopedia of Environmental Health. Elsevier. https://doi.org/10.1016/B978-0-444-63951-6.00272-2
dc.relationYamori, N., Matsushima, Y., & Yamori, W. (2021). Upward LED Lighting from the Base Suppresses Senescence of Lower Leaves and Promotes Flowering in Indoor Rose Management. HortScience, 56(6), 716–721. https://doi.org/10.21273/HORTSCI15795-21
dc.relationYáñez, E. L., Cervantes, S. F., & Molina, A. Z. (2018). EVALUACIÓN DE LA CALIDAD DEL AIRE INTERIOR EN UN CENTRO EDUCATIVO DE LA UNIVERSIDAD DE GUANAJUATO. JÓVENES EN LA CIENCIA, 4(1), 2693–2697.
dc.relationZhang, S., Ai, Z., & Lin, Z. (2021). Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving. Applied Energy, 293. https://doi.org/10.1016/j.apenergy.2021.116954
dc.relationZhen, J., Jiang, X., Xu, Y., Miao, J., Zhao, D., Wang, J., Wang, J., & Wu, G. (2021). Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods. International Journal of Applied Earth Observation and Geoinformation, 102, 102387. https://doi.org/10.1016/J.JAG.2021.102387
dc.rightsAcceso cerrado
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleEvaluación del comportamiento del CO2 en espacios cerrados en presencia de plantas de la especie vegetal “lengua de suegra” (Sansevieria trifasciata)


Este ítem pertenece a la siguiente institución