dc.contributor | Sandoval Rincón, Mónica Viviana | |
dc.contributor | Solano García, Nicolás Mauricio | |
dc.contributor | Cervantes Díaz, Martha | |
dc.contributor | Universidad Santo Tomás | |
dc.creator | Puentes García, Fernando | |
dc.creator | Noguera Llanos, Jhoan Sebastián | |
dc.date.accessioned | 2022-01-25T21:05:28Z | |
dc.date.available | 2022-01-25T21:05:28Z | |
dc.date.created | 2022-01-25T21:05:28Z | |
dc.date.issued | 2022-01-25 | |
dc.identifier | Puentes García, F. y Noguera Llanos, J. S. (2022). Evaluación del comportamiento del CO2 en espacios cerrados en presencia de plantas de la especie vegetal “lengua de suegra” (Sansevieria trifasciata) [Tesis de Pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia | |
dc.identifier | http://hdl.handle.net/11634/42596 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.description.abstract | Residents of urban areas stay around 80% of their time in indoor spaces, where air quality has a relevant influence on health and job performance; specifically, CO2 is recognized as an indicator pollutant of indoor air quality, and a good ventilation. The pursuit of excellence in indoor environments, with conditions that satisfy the occupants, and reduce the symptoms of diseases related to Sick Building Syndrome (SBS), has promoted research on the use of plants as biological filters to purify the air. The CO2 capture capacity by Sansevieria trifasciata, in a controlled system through a sealed chamber, was evaluated in this research. Total plant leaf area was calculated fortnightly for six months using image overlay, whose processing and digitalization was made with the AutoCAD® program, version 3.4.0.4. The CO2 absorption, temperature and humidity were tested within the test chamber at different light levels. With the set of data obtained for leaf area and perimeter, it was possible to determine the relative growth percentage over the sampled time, obtaining an average variation in leaf area of 10,95% and 7,20% for perimeter. Regarding CO2 absorption, a reduction of the initial concentration of 24,25% was achieved using S. trifasciata, during six hours under artificial light conditions of approximately 500 lux; however, in dark conditions and at 5922, 8825 and 10395 lux, an increase in the initial CO2 concentration was observed. Finally, based on the absorption results obtained, a model was proposed using an equation of order two, facilitating decision making regarding the applicability of this pollutant mitigation strategy in closed spaces with conditions like those studied. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Pregrado de Ingeniería Ambiental | |
dc.publisher | Facultad de Ingeniería Ambiental | |
dc.relation | Abdel-Salam, M. M. M. (2022). Relationship between residential indoor air quality and socioeconomic factors in two urban areas in Alexandria, Egypt. Building and Environment, 207. https://doi.org/10.1016/j.buildenv.2021.108425 | |
dc.relation | Alvares, J. (2021). Determinación de clorofila A como indicador de polución en los embalses de las hidroeléctricas Agoyán y Pisayambo por el método espectrofotométrico UV visible. https://repositorio.uta.edu.ec/handle/123456789/32081 | |
dc.relation | Amoozgar, A., Mohammadi, A., & Sabzalian, M. R. (2017). Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica, 55(1), 85–95. https://doi.org/10.1007/s11099-016-0216-8 | |
dc.relation | Andrade, J. L., de la Barrera, E., Reyes, C., Ricalde, M. F., Vargas, G., & Crevera, J. C. (2017). El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Botanical Sciences, 81, 37–50. https://doi.org/10.17129/botsci.1764 | |
dc.relation | APHA. (1989). Standard Methods for the Examination of Water and Wastewater. APHA/ American Water Work Association/Water Environment Federation. Washington, D. C. Part 10200 H, 17ed. | |
dc.relation | Aydogan, A., & Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atmospheric Environment, 45(16), 2675–2682. https://doi.org/10.1016/j.atmosenv.2011.02.062 | |
dc.relation | Azcón-Bieto, J., Fleck, I., & Aranda, X. (n.d.). Fotosintesis, factores ambientales y cambio climático. Retrieved January 11, 2022, from www.ipcc.ch | |
dc.relation | Belén, M. (2021). Partes del estoma. Técnica En Jardinería y Recursos Naturales y Paisajísticos. Ecología Verde. https://www.ecologiaverde.com/partes-del-estoma-3208.html | |
dc.relation | Brauer, M., Casadei, B., Harrington, R. A., Kovacs, R., Sliwa, K., Brauer, M., Davaakhuu, N., Hadley, M., Kass, D., Miller, M., Consuelo Escamilla Nuñez, M., Prabhakaran, D., Su, T.-C., Vaartjes, I. C. H., & Vedanthan, R. (2021). Taking a Stand Against Air Pollution—The Impact on Cardiovascular Disease. Journal of the American College of Cardiology, 77(13). https://doi.org/10.1016/j.jacc.2020.12.003 | |
dc.relation | Bravo, L., & Tomasini, C. (2017). Experiencias en la determinación de clorofila “a” y feopigmentos por espectrofotometría. 3er Congreso Nacional AMICA. http://repositorio.imta.mx/handle/20.500.12013/2115 | |
dc.relation | Brilli, F., Fares, S., Ghirardo, A., de Visser, P., Calatayud, V., Muñoz, A., Annesi-Maesano, I., Sebastiani, F., Alivernini, A., Varriale, V., & Menghini, F. (2018). Plants for Sustainable Improvement of Indoor Air Quality. Trends in Plant Science, 23(6), 507–512. https://doi.org/10.1016/J.TPLANTS.2018.03.004 | |
dc.relation | Caballero, M., Socorro, L., & Beatriz, O. (2007). Efecto invernadero , calentamiento global y cambio climático : una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10). http://www.revista.unam.mx/vol.8/num10/art78/int78.htm#a | |
dc.relation | Calvo, J. F., & Castañeda, J. A. (2016). Análisis de la clorofila de spinacia oleracea y cuantificación de albumina de espagueti utilizando espectrofotometría. UGCiencia, 22(1). https://doi.org/10.18634/ugcj.22v.1i.597 | |
dc.relation | Cao, Y., Li, F., Wang, Y., Yu, Y., Wang, Z., Liu, X., & Ding, K. (2019). Assisted deposition of PM2.5 from indoor air by ornamental potted plants. Sustainability (Switzerland), 11(9). https://doi.org/10.3390/su11092546 | |
dc.relation | Casierra, F., Ávila, O., & Riascos, D. (2012). Cambios diarios del contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra. Temas Agrarios, 17(1), 60–71. https://doi.org/10.21897/rta.v17i1.697 | |
dc.relation | Cervera Herrera, J. C., Leirana-Alcocer, J. L., Navarro Alberto, J. A., Cervera Herrera, J. C., Leirana-Alcocer, J. L., & Navarro Alberto, J. A. (2018). Factores ambientales relacionados con la cobertura de Agave angustifolia (Asparagaceae) en el matorral costero de Yucatán, México. Acta Botánica Mexicana, 2018(124), 0–0. https://doi.org/10.21829/ABM124.2018.1252 | |
dc.relation | Chipana, M. M., & Matos, N. (2020). Evaluación de las concentraciones de CO2 en interiores y su influencia en la salud de los estudiantes de la Universidad Peruana Unión. http://hdl.handle.net/20.500.12840/3196 | |
dc.relation | Choe, Y., Shin, J., Park, J., Kim, E., Oh, N., Min, K., Kim, D., Sung, K., Cho, M., & Yang, W. (2022). Inadequacy of air purifier for indoor air quality improvement in classrooms without external ventilation. Building and Environment, 207. https://doi.org/10.1016/j.buildenv.2021.108450 | |
dc.relation | Cordero Rodríguez, S. (2003). Plantas De Metabolismo Fotosintético C-3, C-4 Y Cam. Spin Cero, 7, 121–128. http://exa.unne.edu.ar/biologia/fisiologia.vegetal/PlantasdemetabolismoC3yC4.pdf | |
dc.relation | da Silva, J. E., & dos Santos, E. (2021). Factores abióticos sobre aspectos ecofisiológicos de Handroanthus impetiginosus y Handroanthus serratifolius. Bosque (Valdivia), 42(1), 121–129. https://doi.org/10.4067/s0717-92002021000100121 | |
dc.relation | Díaz, G. (2012). EL CAMBIO CLIMÁTICO. Ciencia y Sociedad, XXXVII(2), 227–240. https://www.redalyc.org/articulo.oa?id=87024179004 | |
dc.relation | Dionova, B. W., Mohammed, M. N., Al-Zubaidi, S., & Yusuf, E. (2020). Environment indoor air quality assessment using fuzzy inference system. ICT Express, 6(3). https://doi.org/10.1016/j.icte.2020.05.007 | |
dc.relation | Dirección General de Industria; Energía y Minas de la Comunidad de Madrid. (2016). Guía de Calidad del Aire Interior. Fenercom. https://www.fenercom.com/pdf/publicaciones/Guia_de_Calidad_del_Aire_Interior_fenercom_2016.pdf | |
dc.relation | Dugar, A. (n.d.). Lighting Green Walls-finding the optimum CCT and SPD of white LED light sources. Lighting Research & Design. Retrieved September 12, 2021, from https://2sz7fh20hqku3jnvjc3lxy6g-wpengine.netdna-ssl.com/wp-content/themes/xicato/documentuploads/Lighting%20Green%20Walls%20.pdf | |
dc.relation | EPA. (2021). Cómo mejorar la calidad del aire de los interiores | US EPA. Agencia de Proteción Ambiental de Estados Unidos. https://espanol.epa.gov/cai/como-mejorar-la-calidad-del-aire-de-los-interiores | |
dc.relation | FAO. (2013). Factores ambientales. 1–6. https://www.fao.org/3/x8234s/x8234s08.htm | |
dc.relation | Fermo, P., Artíñano, B., de Gennaro, G., Pantaleo, A. M., Parente, A., Battaglia, F., Colicino, E., di Tanna, G., Goncalves da Silva Junior, A., Pereira, I. G., Garcia, G. S., Garcia Goncalves, L. M., Comite, V., & Miani, A. (2021). Improving indoor air quality through an air purifier able to reduce aerosol particulate matter (PM) and volatile organic compounds (VOCs): Experimental results. Environmental Research, 197. https://doi.org/10.1016/j.envres.2021.111131 | |
dc.relation | Fromme, H. (2019). Particulate Matter and Ultrafine Particles in Indoor Air. Encyclopedia of Environmental Health, 36–48. https://doi.org/10.1016/B978-0-12-409548-9.11243-6 | |
dc.relation | García, M. P. (2017). Influencia de la lámina de agua aplicada y la frecuencia de riego; sobre la calidad y rendimiento del cultivo de sábila (Aloe vera (L.), Burm. F.) en la aldea Tierra Blanca, Guastatoya, el Progreso. http://www.repositorio.usac.edu.gt/id/eprint/8870 | |
dc.relation | González-Martín, J., Kraakman, N. J. R., Pérez, C., Lebrero, R., & Muñoz, R. (2021). A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere, 262, 128376. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128376 | |
dc.relation | Green, J., & Sánchez, S. (2013). La calidad del aire en América Latina: Una visión panorámica. Clean Air Institute. https://sinia.minam.gob.pe/documentos/calidad-aire-america-latina-una-vision-panoramica | |
dc.relation | Guáqueta, S. D. (2019). Efectos de los factores climáticos de producción sobre la extracción de nitrógeno, calcio y potasio en cultivos de fresa (Fragaria ananassa Deuch cv Albión). https://repositorio.unal.edu.co/handle/unal/76090 | |
dc.relation | Guardino, X. (2011). Calidad del Aire Interior. Enciclopedioa de Salud y Seguridad En El Trabajo, 44, 44.2-44.6. https://www.insst.es/documents/94886/162520/Cap%C3%ADtulo+44.+Calidad+del+aire+interior | |
dc.relation | Gubb, C., Blanusa, T., Griffiths, A., & Pfrang, C. (2019). Interaction between plant species and substrate type in the removal of CO2 indoors. Air Quality, Atmosphere and Health, 12(10). https://doi.org/10.1007/s11869-019-00736-2 | |
dc.relation | Han, Y., Lee, J., Haiping, G., Kim, K. H., Wanxi, P., Bhardwaj, N., Oh, J. M., & Brown, R. J. C. (2022). Plant-based remediation of air pollution: A review. Journal of Environmental Management, 301, 113860. https://doi.org/10.1016/J.JENVMAN.2021.113860 | |
dc.relation | Hernández, J. D., Espinosa, J. F., Peñaloza, E., Rodriguez, J. E., Chacon, J. G., Toloza, C., Arenas, M. K., Carrillo, S., & Bermudez, V. (2018). Sobre el uso adecuado del coeficiente de correlación de Pearson: definición, propiedades y suposiciones. Archivos Venezolanos de Farmacología y Terapéutica, 37, 587–601. https://www.redalyc.org/articulo.oa?id=55963207025 | |
dc.relation | Hörmann, V., Brenske, K. R., & Ulrichs, C. (2017). Suitability of Test Chambers for Analyzing Air Pollutant Removal by Plants and Assessing Potential Indoor Air Purification. Water, Air, and Soil Pollution, 228(10), 1–13. https://doi.org/10.1007/s11270-017-3586-z | |
dc.relation | IDEAM. (2019). Informe del estado de la Calidad del Aire en Colombia 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales. | |
dc.relation | INTAGRI. (2018). Plantas C3, C4 Y CAM. Serie Nutrición Vegetal, 125(1), 5p. | |
dc.relation | Irga, P. J., Pettit, T. J., & Torpy, F. R. (2018). The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Reviews in Environmental Science and Bio/Technology, 17(2), 395–415. https://doi.org/10.1007/s11157-018-9465-2 | |
dc.relation | Irga, P. J., Torpy, F. R., & Burchett, M. D. (2013). Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmospheric Environment, 77, 267–271. https://doi.org/10.1016/J.ATMOSENV.2013.04.078 | |
dc.relation | Istiadji, A. D., Satwiko, P., Suhodo, Y. P., Sekarlangit, N., Prasetya, A., & Silvia, I. (2020). The development of an organic air cleaner (OAC) to reduce CO2 level of air-conditioned rooms without fresh air supply. International Journal of Ventilation, 1–18. https://doi.org/10.1080/14733315.2020.1833518 | |
dc.relation | Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie Und Physiologie Der Pflanzen, 167(2), 191–194. https://doi.org/10.1016/s0015-3796(17)30778-3 | |
dc.relation | Jones, A. P. (2002). Chapter 3 Indoor air quality and health. Developments in Environmental Science, 1(C), 57–115. https://doi.org/10.1016/S1474-8177(02)80006-7 | |
dc.relation | Kim, K. J., Kim, H. J., Khalekuzzaman, M., Yoo, E. H., Jung, H. H., & Jang, H. S. (2016). Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants. Environmental Science and Pollution Research, 23(7), 6149–6148. https://doi.org/10.1007/s11356-016-6065-y | |
dc.relation | Lee, J., & Kang, H. (2015). The Effect of Improving Indoor Air Quality using some C3 Plants and CAM Plants. Indian Journal of Science and Technology, 8(26). https://doi.org/10.17485/ijst/2015/v8i26/80693 | |
dc.relation | Lewin, W. (2016). Dispersión Rayleigh Español . GeoLab PyGIS. https://geolabpygis.wordpress.com/2017/03/20/walter-lewin-dispersion-rayleigh-espanol/ | |
dc.relation | Li, C., & Managi, S. (2022). Spatial Variability of the Relationship between Air Pollution and Well-being. Sustainable Cities and Society, 76. https://doi.org/10.1016/j.scs.2021.103447 | |
dc.relation | Lin, M. W., Chen, L. Y., & Chuah, Y. K. (2017). Investigation of a potted plant (Hedera helix) with photo-regulation to remove volatile formaldehyde for improving indoor air quality. Aerosol and Air Quality Research, 17(10). https://doi.org/10.4209/aaqr.2017.04.0145 | |
dc.relation | Liu, G., Xiao, M., Zhang, X., Gal, C., Chen, X., Liu, L., Pan, S., Wu, J., Tang, L., & Clements-Croome, D. (2017). A review of air filtration technologies for sustainable and healthy building ventilation. Sustainable Cities and Society, 32, 375–396. https://doi.org/10.1016/J.SCS.2017.04.011 | |
dc.relation | Marín, J. G. (2009). Factores que afectan el crecimiento de las plantas. Instituto Colombiano Agropecuario. https://repository.agrosavia.co/handle/20.500.12324/22033 | |
dc.relation | McIntosh, A., & Pontius, J. (2017). Air Quality and Atmospheric Science. Case Studies for Integrating Science and the Global Environment, 255–359. https://doi.org/10.1016/B978-0-12-801712-8.00003-2 | |
dc.relation | Mentese, S., Mirici, N. A., Elbir, T., Palaz, E., Mumcuoğlu, D. T., Cotuker, O., Bakar, C., Oymak, S., & Otkun, M. T. (2020). A long-term multi-parametric monitoring study: Indoor air quality (IAQ) and the sources of the pollutants, prevalence of sick building syndrome (SBS) symptoms, and respiratory health indicators. Atmospheric Pollution Research, 11(12), 2270–2281. https://doi.org/10.1016/j.apr.2020.07.016 | |
dc.relation | Ministerio de Minas y Energía. (2010). Resolución No. 180540 . Ministerio de Minas y Energía. Republica de Colombia. https://www.minenergia.gov.co/documents/10180/23517/20729-7853.pdf | |
dc.relation | Mohamed, S., Rodrigues, L., Omer, S., & Calautit, J. (2021). Overheating and indoor air quality in primary schools in the UK. Energy and Buildings, 250. https://doi.org/10.1016/j.enbuild.2021.111291 | |
dc.relation | Mota, C., Alcaraz, C., Iglesias, M., & Carvajal, M. (2017). INVESTIGACION SOBRE LA ABSORCIÓN DE CO2 POR LOS CULTIVOS MÁS REPRESENTATIVOS DE LA REGIÓN DE MURCIA. http://www.lessco2.es/pdfs/noticias/ponencia_cisc_espanol.pdf | |
dc.relation | Nederhoff, E. (2009). Air humidity, stomata & transpiration. Practical Hydroponics & Greenhouses , 37. | |
dc.relation | Ogburn, R. M., & Edwards, E. J. (2010). The Ecological Water-Use Strategies of Succulent Plants. Advances in Botanical Research, 55(C), 179–225. https://doi.org/10.1016/B978-0-12-380868-4.00004-1 | |
dc.relation | Oh, H.-J., Nam, I.-S., Yun, H., Kim, J., Yang, J., & Sohn, J.-R. (2014). Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Building and Environment, 82, 203–214. https://doi.org/10.1016/j.buildenv.2014.08.019 | |
dc.relation | Ortega, L., Sánchez, J., Díaz, R., & Ocampo, J. (2010). Efecto de diferentes sustratos en el crecimiento de las plántulas de tomate. Ra Ximhai, 6(3), 365–372. | |
dc.relation | Ortiz, J. D., & Jackson, R. (2020). Understanding Eunice Foote’s 1856 experiments: heat absorption by atmospheric gases. Notes and Records: The Royal Society Journal of the History of Science. https://doi.org/10.1098/rsnr.2020.0031 | |
dc.relation | OSMAN. (n.d.). Informe Calidad del aire interior. Observatorio de Salud y Medio Ambiente de Andalucía. Retrieved November 21, 2021, from https://www.diba.cat/c/document_library/get_file?uuid=c7389bc9-6b7b-4711-bdec-3ead4bc9a68b&groupId=7294824 | |
dc.relation | Pamonpol, K., Areerob, T., & Prueksakorn, K. (2020). Indoor Air Quality Improvement by Simple Ventilated Practice and Sansevieria Trifasciata. Atmosphere 2020, Vol. 11, Page 271, 11(3), 271. https://doi.org/10.3390/ATMOS11030271 | |
dc.relation | Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., Turkgulu, B., Kumar, G. A., Khare, M., Beig, G., Gupta, T., Krishnankutty, R. P., Causey, K., Cohen, A. J., Bhargava, S., Aggarwal, A. N., Agrawal, A., Awasthi, S., Bennitt, F., … Dandona, L. (2021). Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019. The Lancet Planetary Health, 5(1). https://doi.org/10.1016/S2542-5196(20)30298-9 | |
dc.relation | Panyametheekul, S., Rattanapun, T., Morris, J., & Ongwandee, M. (2019). Foliage houseplant responses to low formaldehyde levels. Building and Environment, 147, 67–76. https://doi.org/10.1016/j.buildenv.2018.09.053 | |
dc.relation | Panyametheekul, S., Rattanapun, T., & Ongwandee, M. (2018). Ability of artificial and live houseplants to capture indoor particulate matter. Indoor and Built Environment, 27(1), 121–128. https://doi.org/10.1177/1420326X16671016 | |
dc.relation | Parseh, I., Teiri, H., Hajizadeh, Y., & Ebrahimpour, K. (2018). Phytoremediation of benzene vapors from indoor air by Schefflera arboricola and Spathiphyllum wallisii plants. Atmospheric Pollution Research, 9(6), 1083–1087. https://doi.org/10.1016/j.apr.2018.04.005 | |
dc.relation | Paterson, P. (2017). Calentamiento global y cambio climático en Sudamérica. Revista Política y Estrategia, 130, 153–188. https://doi.org/10.26797/rpye.v0i130.133 | |
dc.relation | Pérez-Urrestarazu, L., Fernández-Cañero, R., Franco-Salas, A., & Egea, G. (2015). Vertical Greening Systems and Sustainable Cities. Journal of Urban Technology, 22(4), 65–85. https://doi.org/10.1080/10630732.2015.1073900 | |
dc.relation | Pérez, U., & Carril, E. (2009). Fotosíntesis: Aspectos Básicos. Reduca (Biología), 2(3), 1–47. | |
dc.relation | Pettit, T., Irga, P. J., & Torpy, F. R. (2018). Towards practical indoor air phytoremediation: A review. Chemosphere, 208, 960–974. https://doi.org/10.1016/j.chemosphere.2018.06.048 | |
dc.relation | Pheomphun, P., Treesubsuntorn, C., & Thiravetyan, P. (2019). Effect of exogenous catechin on alleviating O3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. Ecotoxicology and Environmental Safety, 180, 374–383. https://doi.org/10.1016/J.ECOENV.2019.05.002 | |
dc.relation | Placeres, M. R., Olite, F. D., & Toste, M. Á. (2006). La contaminación del aire: Su repercusión como problema de salud. In Revista Cubana de Higiene y Epidemiologia (Vol. 44, Issue 2). | |
dc.relation | Querol, X. (2008). Calidad del aire, partículas en suspensión y metales. In Revista Espanola de Salud Publica (Vol. 82, Issue 5, pp. 447–454). https://doi.org/10.1590/s1135-57272008000500001 | |
dc.relation | Quispe, A. O. (2020). Calidad de aire en interiores por dióxido de carbono y su relación con la ventilación de las oficinas de la Municipalidad Provincial de Tocache. http://hdl.handle.net/20.500.12840/4235 | |
dc.relation | Retolaza, F. (2017). SISTEMATIZACIÓN DEL PROCESO PRODUCTIVO DE CURARINA (Sansevieria trifasciata Prain) EN EL PARCELAMIENTO CUYUTA, MASAGUA, ESCUINTLA, GUATEMALA, C. A., PERIODO 2012-2016. http://www.repositorio.usac.edu.gt/8342/1/RetolazaEstradaFreddyGiovanni.pdf | |
dc.relation | Ruiz, M. (2014). Variación de la fotosíntesis CAM en dos especies de Agave por el desarrollo y el ambiente. https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/3457 | |
dc.relation | Rwawiire, S., & Tomkova, B. (2015). Morphological, Thermal, and Mechanical Characterization of Sansevieria trifasciata Fibers. Journal of Natural Fibers, 12(3), 201–210. https://doi.org/10.1080/15440478.2014.914006 | |
dc.relation | Sabater, F. (1978). La luz como factor ambiental para las plantas. Anales de La Universidad de Murcia. Ciencias, 31(1977). | |
dc.relation | Salinas, H. (2017). Caracterización de las respuestas del metabolismo fotosintético CAM (Metabolismo Ácido de las Crasuláceas) a la temperatura, radiación solar y estres hídrico en Agave cupreata (Trel. & Berger). http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/1907 | |
dc.relation | Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., & Fisk, W. J. (2012). Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environmental Health Perspectives, 120(12), 1671–1677. https://doi.org/10.1289/ehp.1104789 | |
dc.relation | Sato, T., Shimoda, Y., Matsuda, K., Tanaka, A., & Ito, H. (2018). Mg-dechelation of chlorophyll a by Stay-Green activates chlorophyll b degradation through expressing Non-Yellow Coloring 1 in Arabidopsis thaliana. Journal of Plant Physiology, 222, 94–102. https://doi.org/10.1016/J.JPLPH.2018.01.010 | |
dc.relation | Serrano, P. (2020). ¿Qué es la Calidad del Aire Interior (CAI)? . Calor y Frio. https://www.caloryfrio.com/construccion-sostenible/ventilacion-y-calidad-aire-interior/que-es-la-calidad-del-aire-interior-cai.html#top | |
dc.relation | Setsungnern, A., Treesubsuntorn, C., & Thiravetyan, P. (2017). The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum. Plant Physiology and Biochemistry, 120, 95–102. https://doi.org/10.1016/j.plaphy.2017.09.021 | |
dc.relation | Soreanu, G., Dixon, M., & Darlington, A. (2013). Botanical biofiltration of indoor gaseous pollutants – A mini-review. Chemical Engineering Journal, 229, 585–594. https://doi.org/10.1016/J.CEJ.2013.06.074 | |
dc.relation | Squeo F. A. y M.F. León. 2007. Transpiración. En Squeo F.A. y L. Cardemil (eds). Fisiología vegetal. Ediciones Universidad de La Serena, Chile. | |
dc.relation | Sriprapat, W., Suksabye, P., Areephak, S., Klantup, P., Waraha, A., Sawattan, A., & Thiravetyan, P. (2014). Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants. Ecotoxicology and Environmental Safety, 102(1), 147–151. https://doi.org/10.1016/j.ecoenv.2014.01.032 | |
dc.relation | Sriprapat, W., & Thiravetyan, P. (2013). Phytoremediation of BTEX from indoor air by zamioculcas zamiifolia. Water, Air, and Soil Pollution, 224(3). https://doi.org/10.1007/s11270-013-1482-8 | |
dc.relation | Su, Y. M., & Lin, C. H. (2015). Removal of indoor carbon dioxide and formaldehyde using green walls by bird nest fern. Horticulture Journal, 84(1), 69–76. https://doi.org/10.2503/hortj.CH-114 | |
dc.relation | Suhaimi, M. M., Leman, A. M., Hariri, A., Rahman, K. A., Yusof, M. Z. M., & Afandi, A. (2016). Profiling of Indoor Plant to Deteriorate Carbon Dioxide Using Low Light Intensity. MATEC Web of Conferences, 78. https://doi.org/10.1051/matecconf/20167801011 | |
dc.relation | Suhaimi, M. M., Leman, A. M., & Safii, H. (2016). Indoor plants as agents deterioration of gas pollutions. ARPN Journal of Engineering and Applied Sciences, 11(18), 10944–10949. http://www.arpnjournals.com/ | |
dc.relation | Teiri, H., Pourzamani, H., & Hajizadeh, Y. (2018). Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere, 197, 375–381. https://doi.org/10.1016/j.chemosphere.2018.01.078 | |
dc.relation | Thach, T. Q., Mahirah, D., Dunleavy, G., Nazeha, N., Zhang, Y., Tan, C. E. H., Roberts, A. C., Christopoulos, G., Soh, C. K., & Car, J. (2019). Prevalence of sick building syndrome and its association with perceived indoor environmental quality in an Asian multi-ethnic working population. Building and Environment, 166, 106420. https://doi.org/10.1016/J.BUILDENV.2019.106420 | |
dc.relation | Tian, L., Meng, Q., Wang, L., Dong, J., & Wu, H. (2015). Research on the Effect of Electrical Signals on Growth of Sansevieria under Light-Emitting Diode (LED) Lighting Environment. PLoS ONE, 10(6), 1–18. https://doi.org/10.1371/journal.pone.0131838 | |
dc.relation | Torpy, F. R., Irga, P. J., & Burchett, M. D. (2014). Profiling indoor plants for the amelioration of high CO2 concentrations. Urban Forestry and Urban Greening, 13(2), 227–233. https://doi.org/10.1016/j.ufug.2013.12.004 | |
dc.relation | Torpy, F., Zavattaro, M., & Irga, P. (2017). Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO2 concentrations. Air Quality, Atmosphere and Health, 10(5), 575–585. https://doi.org/10.1007/s11869-016-0452-x | |
dc.relation | Treesubsuntorn, C., & Thiravetyan, P. (2018). Botanical biofilter for indoor toluene removal and reduction of carbon dioxide emission under low light intensity by using mixed C3 and CAM plants. Journal of Cleaner Production, 194, 94–100. https://doi.org/10.1016/j.jclepro.2018.05.141 | |
dc.relation | Ullah, H., Treesubsuntorn, C., & Thiravetyan, P. (2021). Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO2 emission. Environmental Science and Pollution Research, 28(1), 538–546. https://doi.org/10.1007/s11356-020-10342-w | |
dc.relation | Vallejo, W. A., Diaz, C., Alvis, M., Cantillo, A., & Fajardo, C. (2018). Methylene blue degradation under visible irradiation on TiO2 electrodes sensitized by dye chlorophyll extract from Spinacia Olera/Degradación de azul de metileno bajo irradiación visible sobre electrodos de TiO2 sensibilizados con pigmentos de clorofila.. Prospectiva, 16(2), 7–12. https://doi.org/10.15665/rp.v16i2.1455 | |
dc.relation | Vallero, D. (2014). Air Pollutant Hazards. Fundamentals of Air Pollution, 197–214. https://doi.org/10.1016/B978-0-12-401733-7.00007-4 | |
dc.relation | Vanegas, M. E. (2011). Calidad del aire y sus efectos en la salud humana. CEGESTI-Éxito Empresarial, 149(149). | |
dc.relation | Vargas, F., & Gallego, I. (2005). Calidad ambiental interior: bienestar, confort y salud. Revista Española de Salud Pública, 79(2), 243–251. https://doi.org/10.1590/s1135-57272005000200011 | |
dc.relation | Wai, T. K., & Willem, H. C. (2011). Perceptions and Physiological Responses to Indoor Air Quality. In Encyclopedia of Environmental Health. Elsevier. https://doi.org/10.1016/B978-0-444-63951-6.00272-2 | |
dc.relation | Yamori, N., Matsushima, Y., & Yamori, W. (2021). Upward LED Lighting from the Base Suppresses Senescence of Lower Leaves and Promotes Flowering in Indoor Rose Management. HortScience, 56(6), 716–721. https://doi.org/10.21273/HORTSCI15795-21 | |
dc.relation | Yáñez, E. L., Cervantes, S. F., & Molina, A. Z. (2018). EVALUACIÓN DE LA CALIDAD DEL AIRE INTERIOR EN UN CENTRO EDUCATIVO DE LA UNIVERSIDAD DE GUANAJUATO. JÓVENES EN LA CIENCIA, 4(1), 2693–2697. | |
dc.relation | Zhang, S., Ai, Z., & Lin, Z. (2021). Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving. Applied Energy, 293. https://doi.org/10.1016/j.apenergy.2021.116954 | |
dc.relation | Zhen, J., Jiang, X., Xu, Y., Miao, J., Zhao, D., Wang, J., Wang, J., & Wu, G. (2021). Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods. International Journal of Applied Earth Observation and Geoinformation, 102, 102387. https://doi.org/10.1016/J.JAG.2021.102387 | |
dc.rights | Acceso cerrado | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | http://purl.org/coar/access_right/c_14cb | |
dc.title | Evaluación del comportamiento del CO2 en espacios cerrados en presencia de plantas de la especie vegetal “lengua de suegra” (Sansevieria trifasciata) | |