dc.contributorCandela Soto, Angélica María
dc.contributorUniversidad Santo Tomás
dc.creatorGarcía Niño, Laura Milena
dc.date.accessioned2021-07-13T00:14:50Z
dc.date.available2021-07-13T00:14:50Z
dc.date.created2021-07-13T00:14:50Z
dc.date.issued2021-07-07
dc.identifierGarcía Niño, L. M. (2021). Evaluación de nanopartículas de sílice mesoporosa de la cascarilla de arroz como sistema de liberación controlada del letrozol. [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia.
dc.identifierhttp://hdl.handle.net/11634/34871
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe use of conventional medications has brought with it different side effects in the human body as a result of the immediate release of the active substance. In addition, rice husk is an agricultural waste generated in large quantities causing pollution problems. Therefore, this research proposal assessed the release kinetics of letrozole using as support material the mesoporous silica nanoparticles obtained from the rice husk. The synthesis of the nanoparticles was performed using the Sol-gel method and characterized by FTIR and TEM. The results obtained showed a controlled release with prolonged action, better adjusting to the first order kinetic model because letrozole is released proportionally to the concentration gradient.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Química Ambiental
dc.publisherFacultad de Química Ambiental
dc.relationAbo-El-Enein, S. A., Eissa, M. A., Diafullah, A. A., Rizk, M. A., & Mohamed, F. M. (2009). Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash. Journal of Hazardous Materials, 172(2–3), 574–579. https://doi.org/10.1016/j.jhazmat.2009.07.036
dc.relationAbu-Thabit, N. Y., & Makhlouf, A. S. H. (2018). Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. En Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume 1: Types and Triggers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101997-9.00001-1
dc.relationAdam, F., Chew, T. S., & Andas, J. (2011). A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass. Journal of Sol-Gel Science and Technology, 59(3), 580–583. https://doi.org/10.1007/s10971-011-2531-7
dc.relationAdira Jaafar, J., Hidayatul Nazirah Kamarudin, N., Dina Setiabudi, H., Najiha Timmiati, S., & Lee Peng, T. (2019). Mesoporous Silica Nanoparticles and Waste Derived-Siliceous Materials for Doxorubicin Adsorption and Release. Materials Today: Proceedings, 19, 1420–1425. https://doi.org/10.1016/j.matpr.2019.11.163
dc.relationAkçay, H. T., & Bayrak, R. (2014). Computational studies on the anastrozole and letrozole, effective chemotherapy drugs against breast cancer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 122, 142–152. https://doi.org/10.1016/j.saa.2013.11.028
dc.relationAquib, M., Farooq, M. A., Banerjee, P., Akhtar, F., Filli, M. S., Boakye-Yiadom, K. O., Kesse, S., Raza, F., Maviah, M. B. J., Mavlyanova, R., & Wang, B. (2019). Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. Journal of Biomedical Materials Research - Part A, 107(12), 2643–2666. https://doi.org/10.1002/jbm.a.36770
dc.relationArcos, C., Pinto, D., & Jorge, R. (2007). La cascarilla de arroz como fuente de SiO 2 Husk of rice as source of SiO 2.
dc.relationArtioli, Y. (2008). Adsorption. Encyclopedia of Ecology, Five-Volume Set, 60–65. https://doi.org/10.1016/B978-008045405-4.00252-4
dc.relationBayat, M., & Nasri, S. (2019). Injectable microgel-hydrogel composites “plum pudding gels”: New system for prolonged drug delivery. En Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00001-1
dc.relationBernal Vargas, A., & Carvajal Cano, L. P. (2019). Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Cultivo De Arroz ( Cascarilla Y Tamo ) Y Su Potencial Aplicación En Viviendas De Interés Social , Paz Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Culti.
dc.relationBrushi, M. L. (2021). Strategies to Modify the Drug Release from Pharmaceutical Systems. ChemicalBook. (2017). Letrozole. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB9286355.htm
dc.relationChen, Y., Ai, K., Liu, J., Sun, G., Yin, Q., & Lu, L. (2015). Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials, 60, 111–120. https://doi.org/10.1016/j.biomaterials.2015.05.003
dc.relationChun, J., Mo Gu, Y., Hwang, J., Oh, K. K., & Lee, J. H. (2019). Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.08.064
dc.relationCrucho, C. I. C. (2015). Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 10(1), 24–38. https://doi.org/10.1002/cmdc.201402290
dc.relationCullity, B. D. (1956). Elements of X-Ray Diffraction Addison-Wesley Metallurgy Series. Journal of Chemical Information and Modeling, 53, 1689–1699.
dc.relationDANE. (2017). Metodología general encuesta nacional de arroz mecanizado ENAM.
dc.relationDash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Review kinetic modeling on drug release from controlled drug delivery systems. 67(3), 217–223.
dc.relationDeeks, E. D., & Scott, L. J. (2009). Exemestane: A review of its use in postmenopausal women with breast cancer. Drugs, 69(7), 889–918. https://doi.org/10.2165/00003495-200969070-00007
dc.relationDelhi, N. (2015). Pharmaceutical Summit and. 2(5).
dc.relationDomínguez, P. (2005). Formas farmacéuticas de liberacion modificada y estereoisómeros ¿Nos aportan algo en la práctica clínica? Boletin de informacion Farmacoterapéutica de Navarra, 13, 1–10.
dc.relationDuarte, C. (2015). El cáncer de mama , desafío mundial Breast cancer , global challenge. Revista Colombiana de Cancerología, 19(1), 1–2.
dc.relationEspinoza Silva, C. V. (2015). Síntesis de nanopartículas potenciales vehículos. 1–82.
dc.relationFoladori, G. (2016). Políticas Públicas En Nanotecnología En América Latina. Problemas del Desarrollo, 47(186), 59–81. https://doi.org/10.1016/j.rpd.2016.03.002
dc.relationGao, L., Sun, J., & Li, Y. (2011). Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery. Journal of Solid State Chemistry, 184(8), 1909–1914. https://doi.org/10.1016/j.jssc.2011.05.052
dc.relationGómez, N. L. (2016). Nanopartículas estímulo-respuesta para la liberación de fármacos. 45(5), 2016.
dc.relationGómez, N. L. (2017). Nanopartículas estímulo-respuesta para la liberación de fármacos.
dc.relationHeng, P. W. S. (2018). Controlled release drug delivery systems. Pharmaceutical Development and Technology, 23(9), 833. https://doi.org/10.1080/10837450.2018.1534376
dc.relationHospital Severo Ochoa. (s/f). Glosario de algunos terminos farmacocinéticos y biofarmacéuticos. 1–6.
dc.relationHospital Universitario Fundación Jiménez Díaz. (2019). Letrozol. http://www.oncohealth.eu/es/area-paciente/cancer/informacion-soporte-paciente/informacion-general/tratamiento/terapia-hormonal/listado-farmacos/letrozol
dc.relationHu, B., He, M., & Chen, B. (2019). Magnetic nanoparticle sorbents. En Solid-Phase Extraction. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816906-3.00009-1
dc.relationHuo, Q. (2011). Synthetic Chemistry of the Inorganic Ordered Porous Materials. En Modern Inorganic Synthetic Chemistry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-53599-3.10016-2
dc.relationIDEAM, UPME, UIS, & COLCIENCIAS. (s/f). Atlas del Potencial Energético de la Biomasa Residual en Colombia.
dc.relationIndurkhya, A., Patel, M., Sharma, P., Abed, S. N., Shnoudeh, A., Maheshwari, R., Deb, P. K., & Tekade, R. K. (2018). Influence of Drug Properties and Routes of Drug Administration on the Design of Controlled Release System. En Dosage Form Design Considerations: Volume I. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814423-7.00006-X
dc.relationJafari, S., Derakhshankhah, H., Alaei, L., & Fattahi, A. (2019). Biomedicine & Pharmacotherapy Mesoporous silica nanoparticles for therapeutic / diagnostic applications. Biomedicine & Pharmacotherapy, 109(October 2018), 1100–1111. https://doi.org/10.1016/j.biopha.2018.10.167
dc.relationJimenez Herrera, M. P. (2018). Cáncer de Mama y Cuello Uterino. Informe De Evento, 03, 2–15. https://www.ins.gov.co/buscador-eventos/Informesdeevento/CÁNCER DE MAMA Y CUELLO UTERINO SEMESTRE I 2018.pdf
dc.relationJong, W. H. De, & Paul, J. B. (2008). Drug delivery and nanoparticles : Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.
dc.relationKhan, I., Saeed, K., & Khan, I. (2017). Nanoparticles : Properties , applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011
dc.relationKim, B., Rutka, J., & Chan, W. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434–2443. https://doi.org/10.1056/NEJMra0912273
dc.relationKresge, C. T., Vartuli, J. C., Roth, W. J., & Leonowicz, M. E. (2004). The discovery of ExxonMobil’s M41S family of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 148, 53–72. https://doi.org/10.1016/s0167-2991(04)80193-9
dc.relationKumar., Chaubal, M., Domb, A. J., & Majeti, R. K. N. V. (2002). Controlled Release Technology. Encyclopedia of Polymer Science and Technology, 5. https://doi.org/10.1002/0471440264.pst436
dc.relationKumar, S., Malik, M. M., & Purohit, R. (2017). Synthesis Methods of Mesoporous Silica Materials. Materials Today: Proceedings, 4(2), 350–357. https://doi.org/10.1016/j.matpr.2017.01.032
dc.relationLammers, T., Aime, S., Hennink, W. I. M. E., Storm, G., & Kiessling, F. (2011). Theranostic Nanomedicine. https://doi.org/10.1021/ar200019c
dc.relationLe, V. H., Thuc, C. N. H., & Thuc, H. H. (2013). Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Research Letters, 8(1), 58. https://doi.org/10.1186/1556-276x-8-58
dc.relationLi, Barnes, J. C., Aleksandr, B., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590–2605. https://doi.org/10.1039/c1cs15246g
dc.relationLi, J., Shen, S., Kong, F., Jiang, T., Tang, C., & Yin, C. (2018). Effects of pore size on: In vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Advances, 8(43), 24633–24640. https://doi.org/10.1039/c8ra03914c
dc.relationLin, Y.-S. (2012). Critical Considerations in Development of Mesoporous Silica Nanoparticles for Biological Applications. The Journal of Physical Chemistry Letters, 3, 364–374.
dc.relationLiu, Y., Li, K., Mohideen, M., & Ramakrishna, S. (2019). Fiber membranes obtained by melt electrospinning for drug delivery. 173–195. https://doi.org/10.1016/B978-0-12-816220-0.00009-9
dc.relationLozano, C. (2020). Alternativa de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria. Universidad Nacional Abierta y a Distancia - UNAD, 67. https://repository.unad.edu.co/bitstream/handle/10596/33698/cllozanor.pdf?sequence=1&isAllowed=y
dc.relationLu, Y., Sun, W., & Gu, Z. (2014). Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release, 194, 1–19. https://doi.org/10.1016/j.jconrel.2014.08.015
dc.relationLyddy, R. (2009). Nanotechnology. Information Resources in Toxicology, 321–328. https://doi.org/10.1016/B978-0-12-373593-5.00036-7
dc.relationManju, S., & Sreenivasan, K. (2010). Functionalised nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials: Science and Design, 267–297. https://doi.org/10.1533/9781845699802.2.267
dc.relationMcNeil, S. E. (2005). Nanotechnology for the biologist. Journal of Leukocyte Biology, 78(3), 585–594. https://doi.org/10.1189/jlb.0205074
dc.relationMehtani, D., Seth, A., Sharma, P., Maheshwari, N., Kapoor, D., Shrivastava, S. K., & Tekade, R. K. (2019). Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. En Biomaterials and Bionanotechnology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814427-5.00004-4
dc.relationMhlanga, N., & Sinha, S. (2015). International Journal of Biological Macromolecules Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide / metal oxide-based hybrids. International Journal of Biological Macromolecules, 72, 1301–1307. https://doi.org/10.1016/j.ijbiomac.2014.10.038
dc.relationMinisterio de Salud. (s/f). Qué es la sangre. https://www.minsal.cl/dona-sangre/que-es-la-sangre/ Ministerio de Salud y Protección Social de Colombia. (s/f). Cáncer de mama. https://www.minsalud.gov.co/salud/publica/ssr/Paginas/Cancer-de-mama.aspx
dc.relationMinisterio de Salud y Protección Social, & Instituto Nacional de Cancerología. (2012). El cáncer de mama: un problema creciente en Colombia. Hechos y Acciones, 4(2), 1–2. https://www.cancer.gov.co/files/libros/archivos/95685f345e64aa9f0fece8a589b5acc3_BOLETIN HECHOS Y ACCIONES MAMA.PDF
dc.relationMinisterio de Sanidad Política Social e Igualdad. (s/f). Ficha Técnica Femara 2,5 mg. https://cima.aemps.es/cima/pdfs/es/ft/61628/FT_61628.pdf
dc.relationMitran, R., Deaconu, M., Matei, C., & Berger, D. (2019). Chapter 11 - Mesoporous Silica as Carrier for Drug-Delivery Systems. 351–374. https://doi.org/https://doi.org/10.1016/B978-0-12-814033-8.00011-4
dc.relationMonotta, J. J. (2017). Evaluación de la cinética de liberación de un fármaco modelo con clasificación biofermacéutica clase II, desde matrices comprimidas compuestas por materiales poliméricos aniónicos.
dc.relationMusić, S., Filipović-Vinceković, N., & Sekovanić, L. (2011). Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering, 28(1), 89–94. https://doi.org/10.1590/S0104-66322011000100011
dc.relationNiculescu, V. C. (2020). Mesoporous Silica Nanoparticles for Bio-Applications. Frontiers in Materials, 7(February). https://doi.org/10.3389/fmats.2020.00036
dc.relationOsman, A. I., Abdelkader, A., Farrell, C., Rooney, D., & Morgan, K. (2019). Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches. Fuel Processing Technology, 192(May), 179–202. https://doi.org/10.1016/j.fuproc.2019.04.026
dc.relationPáez, O. L., Navarro, A. R., Páez, C. A. J., & Herrera, L. F. R. (2016). Rice husk as an alternative in decontamination processes. Scielo, 2. https://doi.org/http://dx.doi.org/10.22507/pml.v11n2a12
dc.relationParashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729–3749. https://doi.org/10.1007/s10854-020-02994-8
dc.relationPareek, V., Bhargava, A., Gupta, R., Jain, N., & Panwar, J. (2017). Synthesis and Applications of Noble Metal Nanoparticles: A Review. Advanced Science, Engineering and Medicine, 9(7), 527–544. https://doi.org/10.1166/asem.2017.2027
dc.relationPark, K. (2013). Facing the Truth about Nanotechnology in Drug Delivery. 9, 7442–7447.
dc.relationPeñaranda, L. V., Montenegro, S. P., & Giraldo, P. A. (2018). Aprovechamiento de Residuos Agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2), 141–150.
dc.relationPermanadewi, I., Kumoro, A. C., Wardhani, D. H., & Aryanti, N. (2019). Modelling of controlled drug release in gastrointestinal tract simulation. Journal of Physics: Conference Series, 1295(1), 0–8. https://doi.org/10.1088/1742-6596/1295/1/012063
dc.relationPetrovska, B. B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6(11), 1–5. https://doi.org/10.4103/0973-7847.95849
dc.relationPiñeros, Y. (2016). Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia.
dc.relationPrasad, S., Kumar, V., Kirubanandam, S., & Barhoum, A. (2018). Engineered nanomaterials: nanofabrication and surface functionalization. En Emerging Applications of Nanoparticles and Architecture Nanostructures (pp. 305–340). Elsevier. https://doi.org/10.1016/B978-0-323-51254-1.00011-7
dc.relationPurnawira, B., Purwaningsih, H., Ervianto, Y., Pratiwi, V. M., Susanti, D., Rochiem, R., & Purniawan, A. (2019). Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012018
dc.relationRafique, M., Shaikh, A. J., Rasheed, R., Tahir, M. B., Bakhat, H. F., Rafique, M. S., & Rabbani, F. (2017). A Review on Synthesis, Characterization and Applications of Copper Nanoparticles Using Green Method. Nano, 12(04), 1750043. https://doi.org/10.1142/S1793292017500436
dc.relationRodin, A. (1911). Adsorption.
dc.relationRosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00156b
dc.relationSaboktakin, M. R. (2017). Synthesis and Characterization of Biodegradable Thiolated Chitosan Nanoparticles as Targeted Drug Delivery System. Journal of Nanomedicine & Nanotechnology, s4(4), 1–4. https://doi.org/10.4172/2157-7439.s4-001
dc.relationSáez, V., Hernáez, E., & López, L. (2003). Liberación controlada de fármacos. aplicaciones biomédicas. 4(2), 111–122.
dc.relationSajid, M., & Akash, H. (s/f). Drug Stability and Chemical Kinetics.
dc.relationSaputra, R. (2019). Letrozol KEMEX. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
dc.relationSDBS. (s/f). Sodium metasilicate hidrate. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
dc.relationShi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 10(9), 3223–3230. https://doi.org/10.1021/nl102184c
dc.relationSingh, B. (2018). Rice husk ash. En Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102156-9.00013-4
dc.relationSodeifian, G., & Sajadian, S. A. (2018). Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). Journal of Supercritical Fluids, 133(August 2017), 239–252. https://doi.org/10.1016/j.supflu.2017.10.015
dc.relationSpruill, W., Wade, W., Dipiro, J., Blouin, R., & Pruemer, J. (2014). Concepts in clinical pharmacokinetics. Sixth edit, 1–18.
dc.relationTang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504–1534. https://doi.org/10.1002/adma.201104763
dc.relationThompson, M. T. (2014). Review of Diode Physics and the Ideal (and Later, Nonideal) Diode. En Intuitive Analog Circuit Design. https://doi.org/10.1016/b978-0-12-405866-8.00003-6
dc.relationTibbitt, M. W., Dahlman, J. E., & Langer, R. (2016). Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 138(3), 704–717. https://doi.org/10.1021/jacs.5b09974
dc.relationTran, T. N., Pham, T. V. A., Le, M. L. P., Nguyen, T. P. T., & Tran, V. M. (2013). Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(4). https://doi.org/10.1088/2043-6262/4/4/045007
dc.relationUllattil, S. G., & Periyat, P. (2017). Sol-Gel Synthesis of Titanium Dioxide Chapter 9 Sol-Gel Synthesis of Titanium Dioxide. Advances in Sol-Gel Derived Materials and Technologies, February, 271–283. https://doi.org/10.1007/978-3-319-50144-4
dc.relationUniversidad de Valencia. (2013). Tema 7. Superficies sólidas: adsorción y catálisis heterogénea. Departamento de Quimica y fisica., 28. http://www.academia.edu/download/39329863/tema_7_parte_1_ads_completa.pdf
dc.relationUniversidad Popular del Cesar. (s/f). Liberación controlada de fármacos. 1–40.
dc.relationVallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. Angewandte Chemie - International Edition, 46(40), 7548–7558. https://doi.org/10.1002/anie.200604488
dc.relationVaz, S. (s/f). Biomass and Green Chemistry.
dc.relationVazquez, N. I., Gonzalez, Z., Ferrari, B., & Castro, Y. (2017). Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(3), 139–145. https://doi.org/10.1016/j.bsecv.2017.03.002
dc.relationVergara‐Castañeda, H. A., Luna‐Bárcenas, G., & Pool, H. (2020). Emerging and Potential Bio‐Applications of Agro‐Industrial By‐products Through Implementation of Nanobiotechnology. Food Wastes and By‐products, 413–443. https://doi.org/10.1002/9781119534167.ch14
dc.relationWeissig, V., Pettinger, T. K., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International journal of nanomedicine, 9, 4357–4373. https://doi.org/10.2147/IJN.S46900
dc.relationWorathanakul, P., Payubnop, W., & Muangpet, A. (2009). Characterization for post-treatment effect of bagasse ash for silica extraction. World Academy of Science, Engineering and Technology, 56(August 2009), 360–362. https://doi.org/10.5281/zenodo.1062185
dc.relationYanes, R. E., Lu, J., & Tamanoi, F. (2012). Nanoparticle-Based Delivery of siRNA and miRNA for Cancer Therapy (Vol. 32, pp. 185–203). https://doi.org/10.1016/B978-0-12-404741-9.00009-X
dc.relationYun, Y. H., Lee, B. K., & Park, K. (2015). NU SC. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2015.10.005
dc.rightsAcceso cerrado
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleEvaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol


Este ítem pertenece a la siguiente institución