dc.contributorVargas Méndez, Leonor Yamile
dc.creatorTorres Reyes, Erika Amparo
dc.date.accessioned2021-03-16T20:40:39Z
dc.date.available2021-03-16T20:40:39Z
dc.date.created2021-03-16T20:40:39Z
dc.date.issued2021-03-15
dc.identifierTorres-Reyes, E. A. (2021). Actividad larvicida y efecto residual de piperidinas e insecticidas organofosforados en las proteínas de Aedes aegypti (Díptera: Culicidae). [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/32506
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe purpose of this research was to determine the activity, susceptibility, and resistance of larvae on third instar of mosquito Aedes aegypti to insecticides known as Malathion, Chlorpyrifos, and Temephos, as well as to 16 piperidine derivates. To accomplish the purpose of this study, Piedecuesta strain (collected in the field) and Rockefeller strain were used. In both cases, the total proteins and cholinesterase rates were quantified. In the case of the larvae that had been previously exposed to sublethal concentration of the insecticides, residual cholinergic activity was determined, as well as the type of inhibition caused by the AChE. The results of the research showed that the wild-type strain was highly resistant to Malathion and Chlorpyrifos; it was also registered that 14 of the tested piperidines, by acting as mixed-type cholinergic inhibitors, are a promising alternative to control the populations of larvae due to their high toxicity.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ciencias y Tecnologías Ambientales
dc.publisherFacultad de Química Ambiental
dc.relationAhmed, M., Rocha, J. B. T., Mazzanti, C. M., Morsch, A. L. B., Cargnelutti, D., Correa, M., Loro, V., Morsch, V. M., Schetinger, M. R. C. (2007). Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology, 16 (4), 363-369. Doi: 10.1007/s10646-007-0137-1.
dc.relationAiki, Y., Kozaki, T., Mizuno, H. & Kono, Y. (2005). Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite Tetranychus kanzawai. Pesticide Biochemistry and Physiology, 82(2), 154-161. Doi: 10.1016/j.pestbp.2005.02.004.
dc.relationAguirre-Obando, O. A., Dalla Bona, A. C., Duque, J. E. & Navarro-Silva, M. A. (2015). Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. Zoología, 32(1), 14-22. Doi: 10.1590/S1984-46702015000100003.
dc.relationAguirre-Obando, O. A., Pietrobon, A. J., Dalla Bona, A. C. & Navarro-Silva, M. A. (2016). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in Aedes aegypti populations from Jacarezihno (Brazil) after a dengue outbreak. Revista Brasileira de Entomologia, 60(1), 94-100. Doi: 10.1016/j.rbe.2015.11.009.
dc.relationAllaby, M. (2014). Oviposition. A dictionary of zoology. Oxford: Oxford University Press. [En línea]. Consultado el 30 de diciembre de 2020 de la fuente: http://www.oxfordreference.com/view/10.1093/acref/9780199684274.001.0001/acref-9780199684274-e-9864
dc.relationAlout, H., Berthomieu, A., Hadjivassilis, A. & Weill, M. (2007). A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochemistry and Molecular Biology, 37(1), 41-47. Doi: 10.1016/j.ibmb.2006.10.001.
dc.relationAlvarado, A. C. (2016 Desarrollo de nuevos agentes insecticidas: evaluación de la actividad larvicida de derivados piperidínicos en Aedes aegypti vector de los virus DENV, ZIKV, y CHIKV (Tesis de pregrado en Química Ambiental). Universidad Santo Tomás; Bucaramanga, Colombia (p.p. 89).
dc.relationÁlvarez, L. C., Ponce, G., Oviedo, M., López, B. & Flores, A. E. (2014). Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela. Pest Management Science, 70(8), 1262-1266. Doi: 10.1002/ps.3688.
dc.relationAnez, G., Chancey, C., Grinev, A. & Rios, M. (2012). Dengue virus and other arboviruses: a global view of risks. ISBT Science Series, 7(1), 274-282. Doi: 10.1111/j.1751-2824.2012.01602.x.
dc.relationArif, I. A., Ahamed, A., Kumar, R. S., Idhayadhulla, A. & Manilal, A. (2019). Cytotoxic, larvicidal, nematicidal, and antifeedant activities of piperidin- conected 2-thioxoimidazolin-4-one derivatives. Saudi Journal of Biological Sciences, 26(4), 273-280. Doi: 10.1016/j.sjbs.2017.12.007.
dc.relationAssis, C. R. D., Guedes, A., Melo, V., Cristina, R., França, P., Carvalho, E. V. M. M., Bezerra, R. S. & Carvalho Jr, L. B. (2012). Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Science of the Total Environment, 441(1), 141–150. Doi: 10.1016/j. scitotenv.2012.09.058.
dc.relationAssunção-Miranda, I., Bozza, M. T. & Da Poian, A. T. (2010). Pro-Inflammatory response resulting from Sindbis virus infection of human macrophages: Implications for the pathogenesis of viral arthritis. Journal of Medical Virology, 82(1), 164-174. Doi: 10.1002/jmv.21649.
dc.relationAwad, O. M. E. (1984). Molecular mechanism for the inhibition of acetylcholinesterase enzyme by organophosphorothionates. Enzyme, 32(4), 193-200. Doi: 10.1159/000469478.
dc.relationBae, I. K., Kim, K., Choi, S.-D. Chang, K.-S., Lee, H.-S. & Lee, S.-E. (2017). Mosquito larvicidal activities of naturally occurring compounds derived from Piper species. Applied Biological Chemistry, 60(2), 113-117. Doi: 10.1007/s13765-017-0278-8.
dc.relationBaker-Austin, C., Trinanes, J. A., Taylor, G. H., Hartnell, R., Siitonen, A. & Martinez-Urtaza, J. (2013). Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change, 3(1), 73-77. Doi: 10.1038/nclimate1628.
dc.relationBalkrishna, A., Pokhrel, S., Tomer, M., Verma, S., Kumar, A., Nain, P., Gupta, A. & Varshney, A. (2019). Anti-acetylcholinesterase activities of mono-herbal extracts and exhibited synergistic effects of the phytoconstituents: A biochemical and computational study. Molecules, 24(22), 4175. Doi: 10.3390/molecules24224175.
dc.relationBandyopadhyay, S., Lum, L. C. & Kroeger, A. (2006). Classifying dengue: A review of the difficulties in using the WHO case classification for dengue haemorrhagic fever. Tropical Medicine & International Health, 11(8), 1238-1255. Doi: 10.1111/j.1365-3156.2006.01678.x.
dc.relationBarnard, E. A. (1974). Neuromuscular Transmission - Enzymatic Destruction of Acetylcholine. En Hubbard, J. (Ed.) The peripheral nervous system. New York, Estados Unidos: Plenum (p.p. 201-224). ISBN 978-1-4615-8699-9.
dc.relationBartolucci, C., Haller, L. A., Jordis, U., Fels, G. & Lamba, D. (2010). Probing Torpedo californica acetylcholinesterase catalytic gorge with two novel bis-functional galanthamine derivatives. Journal of Medicinal Chemistry, 53(2), 745-751. Doi: 10.1021/jm901296p.
dc.relationBastos, M. S., Lessa, N., Naveca, F. G., Monte, R. L., Braga, W. S., Figueiredo, T. M., Ramasawmy, R. & Mourão, P. G. (2014). Detection of Herpesvirus, Enterovirus, and Arbovirus infection in patients with suspected central nervous system viral infection in the Western Brazilian Amazon. Journal of Medical Virology, 86(9), 1522-1527. Doi: 10.1002/jmv.23953.
dc.relationBecker, N., Petric, D., Zgomba, M., Boase, C., Madon, M. B., Dahl, C., & Kaiser, A. (2010). Mosquitoes and their control (2 ed.). Berlin, Alemania: Springer. (p. 509). ISBN 978-3-540-92874-4.
dc.relationBelzunces, L. P., Toutant, J. P. & Bounias, M. (1988). Acetylcholinesterase from Apis mellifera head. Evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separation. Biochemical Journal, 255(2), 463-470. Doi: 10.1042/bj2550463.
dc.relationBisset, J., Rodríguez, M. M. & Fernández, D. (2006). Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. Journal of Medical Entomology, 43(6), 1185-1189. Doi: 10.1603/0022-2585(2006)43[1185:SOIAAA]2.0.CO;2.
dc.relationBisset, J. A., Rodríguez, M. M., Fernández, D. & Palomino, M. (2007). Resistencia a insecticidas y mecanismos de resistencia en Aedes aegypti (Diptera: Culicidae) de 2 provincias del Perú. Revista Cubana de Medicina Tropical, 59(3), 202-208. On-line ISSN 1561-3054.
dc.relationBisset-Lazcano, J. A., Rodríguez, M. M., San Martín, J. M., Romero, J. E. & Montoya, R. (2009). Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador. Revista Panamericana de Salud Pública, 26(3), 229-234. Doi: 10.1590/S1020-49892009000900007.
dc.relationBloomquist, J. (2003). Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry and Physiology, 54(4), 145-156. Doi: 10.1002/arch.10112.
dc.relationBoyer, S., Calvez, E., Chouin-Carneiro, T., Diallo, D. & Failloux, A.-B. (2018). An overeview of mosquito vectors of Zika virus. Microbes and Infection, 20(11-12), 646-660. Doi: 10.1016/j.micinf.2018.01.006.
dc.relationBourguet, D., Raymond, M., Fournier, D., Malcolm, C. A., Toutant, J. P. & Arpagaus, M. (1996). Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae). Journal of Neurochemistry, 67(5), 2115-2123. Doi: 10.1046/j.1471-4159.1996.67052115.x.
dc.relationBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Doi: 10.1006/abio.1976.9999.
dc.relationBurge, C. A., Mark Eakin, C., Friedman, C. S., Froelich, B., Hershberger, P. K., Hofmann, E. E, Petes, L. E., Prager, K.C., Weil. E., Willis, B. L., Ford, S. E. & Harvell, C. D. (2014). Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science, 6, 249-277. Doi: 10.1146/annurev-marine-010213-135029.
dc.relationCáceres, O. R. (2003). Detección rápida de los serotipos del virus dengue en el mosquito Aedes aegypti. Revista Peruana de Medicina Experimental y Salud Publica, 20(3), 156-158. ISSN 1726-4634.
dc.relationCampbell, N. A., Mitchell, L. G., & Reece, J. B. (2001). La evolución de la diversidad animal (3 ed.). En: Quintanar Duarte, E. (ed.) Biología: Conceptos y relaciones. Naucalpan de Juárez, México: Pearson Educación (p.p. 380-381). ISBN 9789684444133.
dc.relationCao-Lormeau, V. M., Roche, C., Teissier, A., Robin, E., Berry, A. L., Mallet, H. P., Sall, A.A & Musso, D. (2014). Zika virus, French Polynesia, South pacific, 2013. Emerging Infectious Disease, 20(6), 1085-1086. Doi: 10.3201/eid2006.140138.
dc.relationCarson, R. L. (1962). La primavera silenciosa (1 ed.). En Ros, J. (ed.). Barcelona, España: Editorial Crítica. (p.p. 5-14). ISBN 978-84-08-11924-1
dc.relationCasida, J. E. (2009). Pest toxicology: The primary mechanisms of pesticide action. Chemical Research in Toxicology, 22(4), 609-619. Doi: 10.1021/tx8004949.
dc.relationCasida, J. E. & Durkin, K. A. (2013). Anticholinesterase insecticide retrospective. Chemico-Biological Interactions, 203(1), 221-225. Doi: 10.1016/j.cbi.2012.08.002.
dc.relationCecchini, M. & Changeux, J.-P. (2015). The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation. Neuropharmacology, 96(part B), 137-149. Doi: 10.1016/j.neuropharm.2014.12.006.
dc.relationCenters for Disease Control and Prevention. (2013). Flaviviridae. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.cdc.gov/vhf/virus-families/flaviviridae.html
dc.relationChadee, D. D. & Martinez, R. (2016). Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change? Acta Tropica, 156(1), 137-143. Doi: 10.1016/j.actatropica.2015.12.022.
dc.relationChang, C., Shen, W.-K., Wang, T.T., Lin, Y.H., Hsu, E.L. & Dai, S.M. (2009). A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti. Insect Biochemistry and Molecular Biology, 39(4), 272-278. Doi: 10.1016/j.ibmb.2009.01.001.
dc.relationChantraine, J. M., Laurent, D., Ballivian, C., Saavedra, G.; Ibañez, R. & Vilaseca, L. A. (1998). Insecticidal activity of essential oils on Aedes aegypti larvae. Phytotherapy research, 12(5), 350-354. Doi: 10.1002/(SICI)1099-1573(199808)12:5<350::AID-PTR311>3.0.CO;2-7.
dc.relationChareonviriyaphap, T., Bangs, M. J., Suwonkerd, W., Kongmee, M., Corbel, V. & Ngoen-Klan, R. (2013). Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites & Vectors, 6(1), 280-308. Doi: 10.1186/1756-3305-6-280.
dc.relationCharpentier, A., Menozzi, P., Marcel, V., Villatte, F. & Fournier, D. (2000). A method to estimate acetylcholinesterase-active sites and turnover in insects. Analytical Biochemistry, 285(1), 76-81. Doi: 10.1006/abio.2000.4738.
dc.relationChaudhry, M., Prabhu-Dass, J. F., Selvakumar, D. & Kumar, N. S. (2013). In-silico study of acetylcholinesterase inhibition by organophosphate pesticides. International Journal of Pharma and Bio Sciences, 4(3), 788-802. ISSN 0975-6299.
dc.relationChatzidaki, A. & Millar, N. S. (2015). Allosteric modulation of nicotinic acetylcholine receptors. Biochemical Pharmacology, 97(4), 408-417. Doi: 10.1016/j.bcp.2015.07.028.
dc.relationChávez, J., Córdova, O. & Vargas, F. (2005). Niveles de susceptibilidad a temefos en el vector transmisor del dengue en Trujillo, Perú. Anales de la Facultad de Medicina (Perú), 66(1), 53-56. ISSN 1025-5583.
dc.relationChen, L. H. & Hamer, D. H. (2016). Zika Virus: rapid spread in the western hemisphere. Annals of Internal Medicine, 164(9), 613-615. Doi: 10.7326/M16-0150.
dc.relationColombo, S. F., Mazzo, F., Pistillo, F. & Gotti, C. (2013). Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochemical Pharmacology, 86(8), 1063-1073. Doi: 10.1016/j.bcp.2013.06.023.
dc.relationColovic, M. B., Krstic, D. Z., Ušcumlic, G. S. & Vasic, V. M. (2011). Single and simultaneous exposure of acetylcholinesterase to diazinon, chlorpyrifos and their photodegradation products. Pesticide Biochemistry and Physiology, 100(1), 16-22. Doi: 0.1016/j.pestbp.2011.01.010.
dc.relationColovic, M. B., Krstic, D. Z., Lasarevic-Pasti, T. D., Bondzic, A. M. & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current neuropharmacology, 11(3), 315-335. Doi: 10.2174/1570159X11311030006.
dc.relationCygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K. & Doctor, B. P. (1993). Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 2(3), 366-382. Doi: 10.1002/pro.5560020309.
dc.relationDarwish, M. A., Hoogstraal, H., Roberts, T. J., Ahmed, I. P. & Omar, F. (1983). A sero-epidemiological survey for certain arboviruses (Togaviridae) in Pakistan. Transactions of the Royal Society of Tropical Medicine and Hygiene, 77(4), 442-445. Doi: 10.1016/0035-9203(83)90106-2.
dc.relationDevlin, T M. (2004). Bioquímica, libro de texto con aplicaciones clínicas (4 ed.) New York, Estados Unidos: Reverté (p.p. 118-120).
dc.relationDevonshire, A. L. (1975). Studies of the acetylcholinesterase from houseflies (Musca domestica L.) resistant and susceptible to organophosphorus insecticides. Biochemical Journal, 149(2), 463-469. Doi: 10.1042/bj1490463.
dc.relationDiagne, C. T., Diallo, D., Faye, O., Ba, Y., Faye, O., Gaye, A., Dia, I., Faye, O., Weaver, S.C., Sall, A.A. & Diallo, M. (2015). Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases, 15(1), 492. Doi: 10.1186/s12879-015-1231-2.
dc.relationDias, C. N. & Moraes, D. F. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review. Parasitology Research, 113(2), 565-592. Doi: 10.1007/s00436-013-3687-6.
dc.relationDitsuwan, T., Liabsuetrakul, T., Ditsuwan, V. & Thammapalo, S. (2012). Cost of standard indoor ultra-low-volume space spraying as a method to control adult dengue vectors. Tropical Medicine & International Health, 17(6), 767-774. Doi: 10.1111/j.1365-3156.2012.02997.x.
dc.relationDong, K., Du, Y., Rinkevich, F., Nomura, Y., Xu, P., Wang, L., Silver, K. & Zhorov, B. (2014). Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology, 50(1), 1-17. Doi: 10.1016/j.ibmb.2014.03.012.
dc.relationDurant-Archibold, A. A., Santana, A. I. & Gupta, M. P. (2018). Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review. Journal of Ethnopharmacology, 217(1), 63-82. Doi: 10.1016/j.jep.2018.02.008.
dc.relationEldefrawi, M. E., Tripathi, R. K. & O’Brien, R. D. (1970). Acetylcholinesterase isozymes from the housefly brain. Biochimica et Biophysica Acta, 212(2), 308-314. Doi: 10.1016/0005-2744(70)90211-1.
dc.relationEllman, G. L., Courtney, D., Andres, V. Jr. & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. Doi: 10.1016/0006-2952(61)90145-9.
dc.relationEncyclopaedia Britannica. (2020). Neurohormone. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.britannica.com/science/neurohormone
dc.relationEnvironmental Protection Agency from US, (EPA). (2016). Controlling mosquitoes at the larval stage. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.epa.gov/mosquitocontrol/controlling-mosquitoes-larval-stage
dc.relationEnvironmental Protection Agency from US, (EPA). (2017a). DEET. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.epa.gov/insect-repellents/deet
dc.relationEnvironmental Protection Agency from US, (EPA). (2017b). Malathion. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.epa.gov/mosquitocontrol /malathion#:~:text=Malathion%20is%20part%20of%20an,fogging%20equipment%20mounted%20on%20trucks)
dc.relationEnvironmental Protection Agency from US, (EPA). (2019). Residual Time to 25% Bee Mortality (RT25) Data. [En línea]. Consultado el 28 de enero de 2021, de la fuente: https://www.epa.gov/pollinator-protection/residual-time-25-bee-mortality-rt25-data
dc.relationEnvironmental Protection Agency from US, (EPA). (2020). Chlorpyrifos. [En línea]. Consultado el 28 de enero de 2021, de la fuente: https://www.epa.gov/ingredients-used-pesticide-products/chlorpyrifos#:~:text=The%20current%20chlorpyrifos%20labels%20require,hours%20up%20to%20five%20days
dc.relationEuropean Food Safety Authority, (EFSA). (2012). Risk assessment for bees. [En línea]. Consultado el 28 de enero de 2021, de la fuente: https://efsa.onlinelibrary.wiley. com/Doi/epdf/10.2903/j.efsa.2012.2668
dc.relationEuropean Food Safety Authority, (EFSA). (2019). Chlorpyrifos: assessment identifies human health effects. [En línea]. Consultado el 28 de enero de 2021, de la fuente: https://www.efsa.europa.eu/en/press/news/chlorpyrifos-assessment-identifies-human-health-effects
dc.relationEsu, E., Lenhart, A., Smith, L. & Horstick, O. (2010). Effectiveness of peridomestic space spraying with insecticide on dengue transmission: Systematic review. Tropical Medicine & International Health, 15(5), 619-631. Doi: 10.1111/j.1365-3156.2010.02489.x.
dc.relationEvans, P. D. & Maqueira, B. (2005). Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invertebrate neuroscience, 5(3-4), 111-118. Doi: 10.1007/s10158-005-0001-z.
dc.relationFagbami, A. H. (1979). Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. The Journal of Hygiene (Lond), 83(2), 213-219. Doi: 10.1017/s0022172400025997.
dc.relationFan, Z., Chen, L., Zhang, Z., Guo, X., Zhu, Y., Qian, X., Liuyong, M., Jinghua, X., Yinqi, S. Jihong, L., Yichao, Z., Fuqi, L., Haifeng, T. & Yu, Maoxiang. (2016). One class piperidines thiazole oxime ether methoxy base acrylate derivative and its production and use. Nankai University - Peop. Rep. China, Chinese Patent nº CN 107226812 (A).
dc.relationFan, Z., Zhu, Y., Ma, L., Guo, X., Chen, L., Qian, X., Nailou, Z., Haixia, W, Zhiming, Z & Xu, J. (2017). A class of chiral piperidine derivatives and preparation method and use thereof. Nankai University - Peop. Rep. China, Chinese Patent nº CN 107459514 (B).
dc.relationFerguson, N. M., Cucunubá, Z. M., Dorigatti, I., Nedjati-Gilani, G. L., Donnelly, C. A., Basáñez, M.G., Nouvellet, P. & Lessler, J. (2016). Countering the Zika epidemic in Latin America. Science, 353(6297), 353-354. Doi: 10.1126/science.aag0219.
dc.relationFigueira-Mansur, J., Ferreira-Pereira, A., Mansur, J. F., Franco, T. A., Alvarenga, S. L., Sorgine, M. H. F., Neves, B.C., Melo, A.C.A., Leal, W.S., Masuda, H. & Moreira, M. F. (2013). Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae. Insect Molecular Biology, 22(6), 648-658. Doi: 10.1111/imb.12052.
dc.relationFonseca, I., Bolaños, D., Gómez, W. & Quiñones, M. (2007). Evaluación de la susceptibilidad de larvas de Aedes aegypti a insecticidas en el departamento de Antioquia. Memorias XIII Congreso colombiano de parasitología y medicina tropical. Biomédica, 27 Suplemento, 176.
dc.relationFonseca-González, I., Quiñones, M., Lenhart, A. & Brogdon, W. G. (2011). Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Management Science, 67(4), 430-437. Doi: 10.1002/ps.2081.
dc.relationFood and Agriculture Organization of the United Nations, (FAO). (2013). Aspects determining the risk of pesticides to wild bees: risk profiles for focal crops on three continents. Rome, Italy: FAO. ISBN 978-92-5-107405-3.
dc.relationFowler, M. A. & Montell, C. (2013). Drosophila TRP channels and animal behavior. Life Sciences, 92(8-9), 394-403. Doi: 10.1016/j.lfs.2012.07.029.
dc.relationGao, J. R., Kambhampati, S. & Zhu, K. Y. (2002). Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochemistry and Molecular Biology, 32(7), 765-775. Doi: 10.1016/s0965-1748(01)00159-x.
dc.relationGao, J., Naughton, S. X., Beck, W. D., Hernandez, C. M., Wu, G., Wei, Z., Yang, X., Bartlett, M. & Terry Jr, A. V. (2017). Chlorpyrifos and chlorpyrifos oxon impair the transport of membrane bound organelles in rat cortical axons. Neurotoxicology, 62(1): 111-123. Doi: 10.1016/j.neuro.2017.06.003.
dc.relationGarrett, K., Dobson, A. D. M., Kroschel, J., Natarajan, B., Orlandini, S., Tonnang, H. E. Z. & Valdivia, C. (2013). The effects of climate variability and the color of weather time series on agricultural diseases and pests, and on decisions for their management. Agricultural and Forest Meteorology, 170(1), 216-227. Doi: 10.1016/j.agrformet.2012.04.018.
dc.relationGenBank. (2016). Aedes aegypti partial ace-1 gene for acetylcholinesterase, strain Rock. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ncbi.nlm.nih.gov/ nuccore/AJ621915.1
dc.relationGeorghiou, G. (1972). The evolution of resistance to pesticides. Annual Review of Ecology and Systematics, 3(1), 133-168. Doi: 10.1146/annurev.es.03.110172.001025.
dc.relationGoindin, D., Delannay, C., Gelasse, A., Ramdini, C., Gaude, T., Faucon, F., David, J.P., Gustave, J., Vega-Rua, A. & Fouque. (2017). Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infectious Diseases of Poverty, 6(1), 38. Doi: 10.1186/s40249-017-0254-x.
dc.relationGonzález, J., Rey, G., Olano, V. & Brochero, H. (2005). Informe Técnico del Ministerio de la Protección Social. Convenio 043.
dc.relationGuerrero-Hernández, A., Ávila, G. & Rueda, A. (2014). Ryanodine receptors as leak channels. European Journal of Pharmacology, 739(1), 26-38. Doi: 10.1016/j.ejphar.2013.11.016.
dc.relationGulzar, T., Uddin, N., Shiddiqui, B. S., Naqvi, S. N., Begum, S. & Tariq, R. M. (2013). New constituents from the dried fruit of Piper nigrum Linn., and their larvicidal potential against the Dengue vector mosquito Aedes aegypti. Phytochemistry Letters, 6(2), 219-223. Doi: 10.1016/j.phytol.2013.01.006.
dc.relationGuo, D., Luo, J., Zhou, Y., Xiao, H., He, K., Yin, C., Xu, J. & Li, F. (2017). ACE: an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data. BMC Bioinformatics, 18(1), 330. Doi: 10.1186/s12859-017-1741-6.
dc.relationHans, B. (2014). Enzyme assays. Perspectives in Science, 1(1-6), 41-55. Doi: 10.1016/j.pisc.2014.02.005.
dc.relationHarel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P.H., Silman, I & Sussman, J. L. (1993). Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proceedings of the National Academy of Sciences U.S.A., 90(19), 9031-9035. Doi: 10.1073/pnas.90.19.9031.
dc.relationHarvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162. Doi: 10.1126/science.1063699.
dc.relationHarvell, D., Altizer, S., Cattadori, I. M., Harrington, L. & Weil, E. (2009). Climate change and wildlife diseases: When does the host matter the most? Ecology, 90(4), 912-920. Doi: 10.1890/08-0616.1.
dc.relationHayes, E. B. (2009). Zika virus outside Africa. Emerging Infectious Diseases, 15(9), 1347-1350. Doi: 10.3201/eid1509.090442.
dc.relationHeckel, D. G. (2012). Insecticide resistance after Silent Spring. Science, 337(6102), 1612-1614. Doi: 10.1126/science.1226994.
dc.relationHolland, L. Z. (2000). Body-plan evolution in the Bilateria: early antero-posterior patterning and the deuterostome-protostome dichotomy. Current Opinion in Genetics & Development, 10(4), 434-442. Doi: 10.1016/S0959-437X(00)00109-X.
dc.relationHoughton, P. J., Ren, Y. & Howes, M.-J. (2006). Acetylcholinesterase inhibitors from plants and fungi. Natural Product Reports, 23(2), 181-199. Doi: 10.1039/b508966m.
dc.relationHuchard, E., Martinez, M., Alout, H., Douzery, J. P., Lutfalla, G., Berthomieu, A., Bartica, C., Raymond, M. & Weill, M. (2006). Acetylcholinesterase genes within the Diptera: Takeover and loss in true flies. Proceedings of the Royal Society B - Biological Sciences, 273(1601), 2595-2604. Doi: 10.1098/rspb.2006.3621.
dc.relationHughes, D. J., Worthington, P., Russell, C., Clarke, E., Peace, J., Ashton, M., Coulter, T., Roberts, R., Louis-Pierre, M., Fredrik, C., Cassayre, J. & Maienfish, P. (2006). Spiroindolinepiperidine derivatives. Syngenta Participations, US Patent nº US 2006106045 (A).
dc.relationIBM. (2020). Probit analysis, Chi-square test. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ibm.com/support/knowledgecenter/SSLVMB_23.0.0/spss/ tutorials/probit_offer_chisquare.html
dc.relationIcaza, J. T. (2013). Los mosquitos. El mosquito Aedes aegypti y el dengue en México. México, México: Bayer Environmental Science (p.p.17-27).
dc.relationInstituto Nacional del Cáncer de Estados Unidos. (2017). Artralgia. [En línea]. Consultado el 30 de diciembre de 2020 del Diccionario de Cáncer: https://www.cancer.gov/espanol/publicaciones/diccionario?cdrid=455150
dc.relationInstituto Nacional de Salud, (INS). (2012). Alerta para la Intensificación de la vigilancia epidemiológica y atención del dengue y dengue grave. Colombia: INS Circular 008 de 2012. [En línea], Consultado el 30 de diciembre, de la fuente: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/Circular-0008-de-2012.pdf
dc.relationInstituto Nacional de Salud, (INS). (2013). Semana epidemiológica 51. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ins.gov.co/buscador-eventos/ BoletinEpidemiologico/2013%20Boletin%20epidemiologico%20Semana%2051.pdf
dc.relationInstituto Nacional de Salud, (INS). (2014). Semana epidemiológica 53. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2014%20Boletin%20epidemiologico%20semana%2053.pdf
dc.relationInstituto Nacional de Salud, (INS). (2015). Semana epidemiológica 52. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ins.gov.co/buscador-eventos/ BoletinEpidemiologico/2015%20Boletin%20epidemiologico%20Semana%2052.pdf
dc.relationInstituto Nacional de Salud, (INS). (2016). Semana epidemiológica 52. [En línea]. Consultado el 30 de diciembre, de la fuente: https://www.ins.gov.co/buscador-eventos/Boletin Epidemiologico/2016%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2052%20-.pdf
dc.relationInstituto Nacional de Salud, (INS). (2017). Semana epidemiológica 52. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2017%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2052.pdf
dc.relationInstituto Nacional de Salud, (INS). (2018). Semana epidemiológica 52. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2018%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2052.pdf
dc.relationInstituto Nacional de Salud, (INS). (2019). Semana epidemiológica 52. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2019_Boletin_epidemiologico_semana_52.pdf
dc.relationInstituto Nacional de Salud, (INS). (2020). Semana epidemiológica 51. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_53.pdf
dc.relationInsecticide Resistance Action Committee, (IRAC). (2018). Mode of action classification scheme. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: http://www.irac-online.org/modes-of-action/
dc.relationIoos, S., Mallet, H. P., Leparc Goffart, I., Gauthier, V., Cardoso, T. & Herida, M. (2014). Current Zika virus epidemiology and recent epidemics. Médecine et Maladies Infectieuses, 44(7), 302-307. Doi: 10.1016/j.medmal.2014.04.008.
dc.relationJia-Xu. (2014). Diagnóstico. Guías de Estudio de Medicina China (2da ed,), Madrid, España. Fundación Europea de MTC (p.p. 29-30). ISBN: 711713500X, 9787117135009.
dc.relationJirakanjanakit, N., Rongnoparut, P., Saengtharatip, S., Chareonviriyaphap, T., Duchon, S. & Bellec, C. (2007). Insecticide susceptible/resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003-2005. Journal of Economic Entomology, 100(2), 545-550. Doi: 10.1603/0022-0493(2007)100[545:IRSIAS]2.0.CO;2.
dc.relationJohnson, G. & Moore, S. W. (2006). The peripheral anionic site of acetylcholinesterase: structure, functions, and potential role in rational drug design. Current Pharmaceutical Design, 12(2), 217-225. Doi: 10.2174/138161206775193127.
dc.relationJones, K. E., Patel, N. G., Levy, M. A. Storeygard, A., Balk, D., Gittleman, J. L. & Daszak, P. (2015). Global trends in emerging infectious diseases. Nature, 451(1), 990-993. Doi: 10.1038/nature06536.
dc.relationKasprzykowski, J. I., Fukutani, K. F., Fabio, H., Fukutani, E. R., Costa, L. C., Andrade, B. B., & Queiroz, A. T. L. (2020). A recursive sub-typing screening surveillance system detects the appearance of the ZIKV African lineage in Brazil: Is there a risk of a new epidemic? International Journal of Infectious Diseases, 96(1), 579-581. Doi: 10.1016/j.ijid.2020.05.090.
dc.relationKato Simas, N., da Costa Lima, E., Machado Kuster, R., Salgueiro Lage, C. L. & de Oliveira Filho, A. M. (2007). Potential use of Piper nigrum ethanol extract against pyrethroid-resistant Aedes aegypti larvae. Revista da Sociedade Brasileira de Medicina Tropical, 40(4), 405-407. Doi: 10.1590/S0037-86822007000400006.
dc.relationKarunamoorthi, K. & Sabesan, S. (2013). Insecticide resistance in insect vectors of disease with special reference to mosquitoes: A potential threat to global public health. Health Scope, 2(1), 4-8. Doi: 10.5812/jhs.9840.
dc.relationKavitha, P. & Rao, J. V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environmental Toxicology and Pharmacology, 26(2), 192-198. Doi: 10.1016/j.etap.2008.03.010.
dc.relationKavlie, R. G. & Albert, J. T. (2013). Chordotonal organs. Current Biology, 23(9), R334-335. Doi: 10.1016/j.cub.2013.03.048.
dc.relationKawada, H., Higa, Y., Futami, K., Muranami, Y., Kawashima, E., Osei, J. H., Sakyi, K. Y., Dadzie, S., de Souza, D. K., Appawu, M., Otha, N., Suzuki, T. & Minakawa, N. (2016). Discovery of point mutations in the voltage-gated sodium channel from African Aedes aegypti populations: potential phylogenetic reasons for gene introgression. PLoS Neglected Tropical Diseases, 10(6), e0004780. Doi: 10.1371/journal.pntd.0004780.
dc.relationKazemi, M., Tahmasbi, A. M., Valizadeh, R. Nazerian, A. A., Soni, A. & Mohegi, M. M. (2012). Importance and toxicological effects of organophosphorus pesticides: A comprehensive review. Basic Research Journal of Agricultural Science and Review, 1(3), 43-57. Doi: 10.1016/j.tox.2018.09.009.
dc.relationKeita, M., Kané, F., Thiero, O., Traoré, B., Zeukeng, F., Sodio, A. B., Traoré, S.K., Djouaka, R., Doumbia, S. & Sogoba, N. (2020). Acetylcholinesterase (ace-1R) target site mutation G119S and resistance to carbamates in Anopheles gambiae (sensu lato) populations from Mali. Parasites & vectors, 13(1), 283. Doi: 10.1186/s13071-020-04150-x.
dc.relationKenakin, T. P. (2017). Enzymes as Drug Targets (2 Ed.) En: Pharmacology in drug discovery and development. Nueva York, Estados Unidos: Academic Press (p.p. 131-156). Doi: 10.1016/B978-0-12-803752-2.00006-5.
dc.relationKim, Y. H., Choi, J. Y., Je, Y. H., Koh, Y. H. & Lee, S. H. (2010). Functional analysis and molecular characterization of two acetylcholinesterases from the German cockroach, Blattella germanica. Insect Molecular Biology, 19(6), 765-776. Doi: 10.1111/j.1365-2583.2010.01036.x.
dc.relationKim, Y. H. & Lee, S. H. (2013). Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? Insect Biochemistry and Molecular Biology, 43(1), 47-53. Doi: 10.1016/j.ibmb.2012.11.004.
dc.relationKing, R., Mulligan, P. & Stansfield, W. (2013). A dictionary of Genetics. Oxford University Press: Oxford. Doi:10.1093/acref/9780199766444.001.0001.
dc.relationKlowden, M. J. (1997). Endocrine aspects of mosquito reproduction. Archives of Insect Biochemistry and Physiology, 35(4), 491-512. Doi: 10.1002/(SICI)1520-6327(1997)35:4<491::AID-ARCH10>3.0.CO;2-5.
dc.relationKnueppel, D. I., Yap, M. C., Sullenberger, M. T, Hunter, R., Olson, M. B. & Wessels, F. J. (2015). Pesticidal compositions and related methods. Dow AgroSciences LLC, US Patent nº WO 2015175719 (A1).
dc.relationKoellner, G., Steiner, T., Millard, C. B., Silman, I. & Sussman, J. L. (2002). A neutral molecule in a cation-binding site: Specific binding of a PEG-SH to acetylcholinesterase from Torpedo californica. Journal of Molecular Biology, 320(4), 721-725. Doi: 10.1016/S0022-2836(02)00475-8.
dc.relationKoolman, J. & Roehm, K.H. (2005). Color atlas of biochemistry (3 ed) Nueva York, Estados Unidos: Thieme (p.p. 320-321). ISBN 9783131003737.
dc.relationKousba, A. A., Sultatos, L. G., Poet, T. S. & Timchalk, C. (2004). Comparison of chlorpyrifos-oxon and paraoxon acetylcholinesterase inhibition dynamics: potential role of a peripheral binding site. Toxicological Sciences, 80(2), 239-248. Doi: 10.1093/toxsci/kfh163.
dc.relationKouznetsov, V. V., Vargas-Méndez, L. Y. & Muñoz-Acevedo, A. (2010). 3’,4’Dihydrospiro[piperidine-4,2’-(1’H)quinoline] derivates as new antioxidant agents with acetylcholinesterase inhibitory property. Letters in Drug Design & Discovery, 7(10), 710-715. Doi: 10.2174/1570180811007010710.
dc.relationKramer, W., Schirmer, U., Jeschke, P. & Witschel, M. (2007). Modern Crop Protection Compounds (1 ed.). Weinheim, Alemania: WILEY-VCH Verlag GmbH & Co. (p. 1302).
dc.relationKrstic, D. Z., Colovic, M., Kralj, M. B., Franko, M., Krinulovic, K., Trebse, P. & Vasic, V. (2008). Inhibition of AChE by malathion and some structurally similar compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(4): 562-573. Doi: 10.1080/14756360701632031.
dc.relationKruger, N. J. (1994). The Bradford method for protein quantitation (Vol 32). En: Walker J.M. (eds) Basic protein and peptide protocols. Methods in molecular biology™, Nueva Jersey, Estados Unidos: Humana Press (p.p. 9-15). Doi: 10.1385/0-89603-268-X:9.
dc.relationKuno, G. (2007). Research on dengue and dengue-like illness in East Asia and the Western Pacific during the first half of the 20th century. Reviews in Medical Virology, 17(5), 327-341. Doi: 10.1002/rmv.545.
dc.relationLee, S.E. (2000). Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. Journal of the American Mosquito Control Association, 16(3), 245-247. PMID: 11081654.
dc.relationLeong, C.S., Vythilingam, I., Liew, J. W.K., Wong, M.L., Wan-Yusoff, W. S., & Lau, Y. L. (2019). Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasites & Vectors, 12(1), 236. Doi: 10.1186/s13071-019-3472-1.
dc.relationLin, Y.-H., Tsen, W.-L., Tien, N.-Y. & Luo, Y.-P. (2013). Biochemical and molecular analysis to determine pyrethroid resistance in Aedes aegypti. Pesticide Biochemistry and Physiology, 107(2), 266-276. Doi: 10.1016/j.pestbp.2013.08.004.
dc.relationLiu, N. (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review of Entomology, 60(1), 537-559. Doi: 10.1146/annurev-ento-010814-020828.
dc.relationLópez, B., Ponce, G., González, J., Gutiérrez, S. M., Villanueva, O. K., González, G., Rodriguez, C.B.I.P, Black IV., W.C., & Flores, A. E. (2014). Susceptibility to chlorpyrifos in pyrethroid-resistant populations of Aedes aegypti (Diptera: Culicidae) from Mexico. Journal of Medical Entomology, 51(3): 644-649. Doi: 10.1603/me13185.
dc.relationLópez, M. D., Campoy, F. J., Pascual-Villalobos, M. J., Muñoz Delgado, E. & Vidal, C. J. (2015). Acetylcholinesterase activity of electric eel is increased or decreased by selected monoterpenoids and phenylpropanoids in a concentration dependent manner. Chemico-Biological Interaction, 229(1), 36-43. Doi: /10.1016/j.cbi.2015.01.006.
dc.relationLynagh, T., Cromer, B. A., Dufour, V. & Laube, B. (2014). Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics. International Journal for Parasitology: Drugs and Drug Resistance, 4(3), 244-255. Doi: 10.1016/j.ijpddr.2014.07.004.
dc.relationMadhu, S. K., Vijayan, V. A. & Shaukath, A. K. (2011). Bioactivity guided isolation of mosquito larvicide from Piper longum. Asian Pacific Journal of Tropical Medicine, 4(2), 112-116. Doi: 10.1016/S1995-7645(11)60048-5.
dc.relationManulis, S., Ishaaya, I. & Perry, A. S. (1981). Acetylcholinesterase of Aphis citricola: Properties and significance in determining toxicity of systemic organophosphorus and carbamate compounds. Pesticide Biochemistry and Physiology, 15(3), 267-274. Doi: 10.1016/0048-3575(81)90010-9.
dc.relationMarcondes, C. B. & Ximenes, M. F. (2016). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical, 49(1), 4-10. Doi: 10.1590/0037-8682-0220-2015.
dc.relationMartins, A. J., Lins, R. M., Linss, J. G., Peixoto, A. A. & Valle, D. (2009). Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil. The American Journal of Tropical Medicine and Hygiene, 81(1), 108-115. Doi: 10.4269/ajtmh.2009.81.108.
dc.relationMassoulie, J., Pezzementi, L., Bon, S., Krejci, E. & Vallette, F. M. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology, 41(1), 31-91. Doi: 10.1016/0301-0082(93)90040-y.
dc.relationMontoya-Lerma, J., Solarte, Y. A., Giraldo-Calderón, G. I., Quiñonez, M. L., Ruíz-López, F., Wilkerson, R. C. & González, R. Malaria vector species in Colombia - A review. (2011). Memórias do Instituto Oswaldo Cruz, 106(Suppl. 1), 223-238. Doi: 10.1590/S0074-02762011000900028.
dc.relationMoran, M. M., Xu, H. & Clapham, D. E. (2004). TRP ion channels in the nervous system. Current Opinion in Neurobiology, 14(3), 362-369. Doi: 10.1016/j.conb.2004.05.003.
dc.relationMori, A., Lobo, N. F., DeBruyn, B. & Severson, D. W. (2007). Molecular cloning and characterization of the complete acetylcholinesterase gene (Ace1) from the mosquito Aedes aegypti with implications for comparative genome analysis. Insect Biochemistry and Molecular Biology, 37(7), 667-674. Doi: 10.1016/j.ibmb.2007.03.014.
dc.relationMuguran, S. B. & Sathishkumar, R. (2016). Chikungunya infection: A potential re-emerging global threat. Asian Pacific Journal of Tropical Medicine, 9(10), 933-937. Doi: 10.1016/j.apjtm.2016.07.020.
dc.relationMutero, A., Pralavorio, M., Bride, J. M. & Fournier, D. (1994). Resistance associated point mutations in insecticide-insensitive acetylcholinesterase. Proceedings of the National Academy of Sciences U.S.A., 91(13), 5922-5926. Doi: 10.1073/pnas.91.13.5922.
dc.relationMuthusamy, R., Ramkumar, G., Karthi, S. & Shivakumar, M. S. (2014). Biochemical mechanisms of insecticide resistance in field population of Dengue vector Aedes aegypti (Diptera: Culicidae). International Journal of Mosquito Research, 1(2), 1-4. ISSN: 2348-5906.
dc.relationMuthusamy, R. & Shivakumar, M. S. (2015). Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos from three districts of Tamil Nadu, India. Journal of Vector Borne Diseases, 52(2), 159-165. PMID: 26119549.
dc.relationNabeshima, .T., Mori, A., Kozaki, T., Iwata, Y., Hidoh, O., Harada, S., Kasai, S., Severson, D.W., Kono, Y. & Tomita, T. (2004). An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochemical and Biophysical Research Communications, 313(3), 794-801. Doi: 10.1016/j.bbrc.2003.11.141.
dc.relationNational Institute of Neurological Disorders and Stroke, (NINDS). (2018a). Encephalopathy information page. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ninds.nih.gov/Disorders/All-Disorders/Encephalopathy-Information-Page
dc.relationNational Institute of Neurological Disorders and Stroke, (NINDS). (2018b). Microcephaly information page. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: https://www.ninds.nih.gov/Disorders/All-Disorders/Microcephaly-Information-Page
dc.relationNelson, B. C. (1978). Ecology of medically important arthropods in urban environments. En: Frankie, G. W. & Koehler, C. S. (Eds.), Perspectives in Urban Entomology. Nueva York, Estados Unidos: Academic Press (p.p. 87-115). Doi: 10.1016/B978-0-12-265250-9.50011-4.
dc.relationNgoagouni, C., Kamgang, B., Brengues, C., Yahouedo, G., Paupy, C., Nakouné, E., Kazanji, M. & Chandre, F. (2016). Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Parasites & Vectors, 9(1), 599. Doi: 10.1186/s13071-016-1887-5.
dc.relationNoisakran, S., Chokephaibulkit, K., Songprakhon, P., Onlamoon, N., Hsiao, H.-M., Villinger, F., Ansari, A. & Perng, G. C. (2009). A re-evaluation of the mechanisms leading to dengue hemorrhagic fever. Annals of the New York Academy of Sciences, 1171(Suppl. 1), E24-E35. Doi: 10.1111/j.1749-6632.2009.05050.x.
dc.relationNomenclature Committee of the International Union of Biochemistry, (NC-IUB). (1978). Units of enzyme activity. Recommendations 1978. European Journal of Biochemistry, 97(2), 319-320. Doi: 10.1111/j.1432-1033.1979.tb13116.x.
dc.relationde França Nunes, R. F., de Souza, M. A., de Oliveira, J. C., de Oliveira Grangeiro, R. F., de Medeiros Marinho, M. J., Oliveira Pereira, W. Characterization of enzymatic profiles of Aedes aegypti strains from the State of Rio Grande do Norte, Brazil. Ciênce & Saúde Coletiva, 21(1), 285-292. Doi: 10.1590/1413-81232015211.15052014.
dc.relationOcampo, C., Salazar-Terreros, M., Mina, N., McAllister, J. & Brogdon, W. (2011). Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica, 118(1), 37-44. Doi: 10.1016/j.actatropica.2011.01.007.
dc.relationOromí, J. D. (2000). Enfermedades emergentes y reemergentes: algunas causas y ejemplos. Medicina Integral: Medicina preventiva y asistencial en atención primaria de la salud, 36(3), 79-82. On-line ISSN 1561-3038.
dc.relationOsteen, C. D. & Fernandez-Cornejo, J. (2013). Economic and policy issues of U.S. agricultural pesticide use trends. Pest Management Science, 69(9), 1001-1025. Doi: 10.1002/ps.3529.
dc.relationOvergaard, H. J., Olano, V. A., Jaramillo, J. F., Matiz, M. I., Sarmiento, D., Strenstrom, T. A. & Alexander, N. (2017). A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia. Parasites & Vectors, 10(1), 356-367. Doi: 10.1186/s13071-017-2295-1.
dc.relationPaiva, M., Lovin, D. D., Mori, A., Melo-Santos, M., Severson, D. W. & Ayres, C. (2016). Identification of a major Quantitative Trait Locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti. Genomics, 107(1), 40-48. Doi: 10.1016/j.ygeno.2015.11.004.
dc.relationPandey, S. K., Tandon, S., Ahmad, A., Singh, A. K. & Tripathi, A. K. (2013). Structure-activity relationships of monoterpenes and acetyl derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Management Science, 69(11), p.1235-1238. Doi: 10.1002/ps.3488.
dc.relationPark, C. & Allaby, M. A. (2017). A dictionary of environment and conservation (3rd ed.). Oxford, United Kingdom: Oxford University Press. Doi:10.1093/acref/9780191826320.001.0001.
dc.relationPark, I.K., Lee, S.G., Shin, S.C., Park, J.D. & Ahn, Y.J. (2002). Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. Journal of Agricultural and Food Chemistry, 50(7), 1866-1870. Doi: 10.1021/jf011457a.
dc.relationPehkonen, S. & Zhang, Q. (2002). The degradation of organophosphorus pesticides in natural waters: A critical review. Critical Reviews in Environmental Science and Technology, 32(1), 17-72. Doi: 10.1080/10643380290813444.
dc.relationPerez Guitérrez, R. M., Neira Gonzalez, A. M. & Hoyo-Vadillo, C. (2013). Alkaloids from Piper: A review of its phytochemistry and pharmacology. Mini-Reviews in Medicinal Chemistry, 13(2), 163-193. Doi: 10.2174/138955713804805148.
dc.relationPérez, O., Rodríguez, J., Bisset, J. A., Leyva, M., Díaz, M., Fuentes, O., Ramos, F., González, R. & García, I. (2004). Manejo de las especies en insectario: Metodología de cría y medidas de bioseguridad. Manual de indicaciones técnicas para insectarios. La Habana, Cuba: Editorial Ciencias Médicas (p.p. 16-53).
dc.relationPerry, T., Batterham, P. & Daborn, P. J. (2011). The biology of insecticidal activity and resistance. Insect Biochemistry and Molecular Biology, 41(7), 411-422. Doi: 10.1016/j.ibmb.2011.03.003.
dc.relationPezzementi, L., Nachon, F., & Chatonnet, A. (2011). Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: An atypical butyrylcholinesterase from the Medaka Oryzias latipes. PLoS One, 6(3), e17396. Doi: 10.1371/journal.pone.0017396.
dc.relationPimsamarna, S., Sornpengb, W., Akksilpb, S., Paepornc, P. & Limpawitthayakul, M. (2009). Detection of insecticide resistance in Aedes aegypti to organophosphate and synthetic pyrethroid compounds in the north-east of Thailand. Dengue Bulletin, 33(1), 194-202. ISSN 0250-8362.
dc.relationPitterna, T., Muehlebach, M. & Schaetzer, J. H. (2011). Spiro fused 1-amine-piperidine pyrrolidine dione derivatives with pesticidal activity. Syngenta Participations, A., UK Patent WO 2011067135 (A1).
dc.relationPitterna, T., Muehlebach, M. & Schaetzer, J. H. (2013). Spiroheterocyclic dione derivatives used as pesticides. Syngenta Crop Protection, US Patent nº US 20130065756 (A1).
dc.relationPitterna, T., Muehlebach, M. & Schaetzer, J. H. (2014). Spiro fused 1-amino-piperdine pyrrolidine dione derivatives with pesticidal activity. Syngenta Crop Protection, US Patent nº US 8703165 (B2).
dc.relationPohanka, M. (2011a). Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers of the Medical Faculty of the University Palacky Olomouc Czech Republic, 155(3), 219-229. Doi: 10.5507/bp.2011.036.
dc.relationPohanka, M. (2011b). Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. International Journal of Molecular Science, 12(4), 2631-2640. Doi:10.3390/ijms12042631.
dc.relationPollet, S., Melendrez, M. C., Berry, I. M., Duchene, S., Salje, H., Dat, C. & Jarman, R. G. (2018). Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. Infection, Genetics and Evolution, 62(1), 279-295. Doi: 10.1016/j.meegid.2018.04.032.
dc.relationPolson, K. A., Brogdonb, W. G., Rawlins, S. C. & Chadee, D. D. (2011). Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Tropica, 117(1), 31-38. Doi: 10.1016/j.actatropica.2010.09.005
dc.relationPontual, E., Napoleao, T. H., De Assis, C. R., Bezerra, R. S., Xavier, H. S., Navarro, D. M., Coelho, L.C.B.B & Paiva P. M.G. (2012). Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti. Archives of Insect Biochemistry and Physiology, 79(3), 135-152. Doi: 10.1002/arch.21012.
dc.relationPridgeon, J. W., Meepagala, K. M., Becnel, J. J., Clark, G. G., Pereira, R. M. & Linthicum, K. J. (2007). Structure-activity relationships of 33 piperidines as toxicants against female adults of Aedes aegypti (Diptera: Culicidae). Journal of Medical Emtomology, 44(2), 263-269. Doi: 10.1093/jmedent/44.2.263.
dc.relationRamírez-Sánchez, K., Alvarado-Hidalgo, F., Ardao, I. & Starbird-Pérez, R. (2008). Enzymatic inhibition constant of acetylcholinesterase for the electrochemical detection and sensing of chlorpyrifos. Journal of Natural Resources and Development, 8: 09-14. Doi: 10.5027/jnrd.v8i0.02.
dc.relationRao, J. V., Pavan, Y. S. & Madhavendra, S. S. (2003). Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm, Eisenia foetida. Ecotoxicology and Environmental Safety, 54(3), 296-301. Doi: 10.1016/s0147-6513(02)00013-1.
dc.relationReal Academia Española. (2020a). Endémico-a. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: http://dle.rae.es/?id=FC9wL4t
dc.relationReal Academia Española. (2020b). Patógeno-a. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: http://dle.rae.es/srv/search?m=30&w=pat%C3%B3geno
dc.relationRipoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I. & Sussman, J. L. (1993). An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proceedings of the National Academy of Sciences U.S.A., 90(11), 5128-5132. Doi: 10.1073/pnas.90.11.5128.
dc.relationRodríguez, M. M., Bisset, J. A., Milá, L. H., Calvo, E., Díaz, C. & Alain Soca, L. (1999). Niveles de resistencia a insecticidas y sus mecanismos en una cepa de Aedes aegypti de Santiago de Cuba. Revista Cubana de Medicina Tropical, 51(2), 83-88. On-line ISSN 1561-3054.
dc.relationRodríguez, M. M., Bisset, J. A., Fernández, D. & Pérez, O. (2004). Resistencia a insecticidas en larvas y adultos de Aedes aegypti: prevalencia de la esterasa A4 asociada con la resistencia a temefos. Revista Cubana de Medicina Tropical, 56(1), 54-60. On-line ISSN 1561-3054.
dc.relationRosenberg, R. (2015). Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cellular and Molecular Life Sciences, 72(6), 1115-1125. Doi: 10.1007/s00018-014-1785-y.
dc.relationRosenberry, T. L. (1975a). Acetylcholinesterase. Advances in Enzymology and Related Areas of Molecular Biology, 43, 103-218. Doi: 10.1002/9780470122884.ch3.
dc.relationRosenberry, T. L. (1975b). Catalysis by acetylcholinesterase: Evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. Proceedings of the National Academy of Sciences U.S.A., 72(10), 3834-3838. Doi: 10.1073/pnas.72.10.3834.
dc.relationRosero-García, D., Rúa-Uribe, G., Correa, M. M., Conn, J. E. & Uribe-Soto, S. (2017). Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia. Journal of Vector Ecology, 43(1), 71-79. Doi: 10.1111/jvec.12285.
dc.relationRozo-Lopez, P. & Mengual, X. (2015). Updated list of the mosquitoes of Colombia (Diptera: Culicidae). Biodiversity Data Journal, 3(3), e4567. Doi: 10.3897/BDJ.3.e4567.
dc.relationSaavedra-Rodríguez, K., Strode, C., Flores, A., García-Luna, S., Reyes-Solis, G., Ranson, H., Hemingway, J. & Black, W. C. (2014). Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. Insect Molecular Biology, 23(2), 199-215. Doi: 10.1111/imb.12073.
dc.relationSaelim, V., Brogdon, W. G., Rojanapremsuk, J., Suvannadaba, S., Pandii, W., Jones, J. W. & Sithiprasasna, R. (2005). Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health, 36(2), 417-25. PMID: 15916049.
dc.relationSantos, S., Melo, M. A., Valença Cardoso, A., Santos, R., De Sousa, D. & Cavalcanti, S. (2011). Structure–activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere, 84(1), 150-153. Doi: 10.1016/j.chemosphere.2011.02.018.
dc.relationScarpini, E., Scheltens, P. & Feldman, H. (2003). Treatment of Alzheimer’s disease: Current status, and new perspectives. The Lancet Neurology, 2(9), 539-547. Doi: 10.1016/s1474-4422(03)00502-7.
dc.relationSchaetzer, J. H., Lu, L., Wu, Y., Mao, L., Pitterna, T. & Muehlebach, M. (2012). 3-Substituted spiroheterocyclic furan and thiofuran dione derivatives useful as pesticides. Syngenta Participations, Switzerland Patent nº WO 2012069008 (A1).
dc.relationSecretaria de Salud de la Alcaldía de Bucaramanga. (2016). Documento de respuesta 11-122 a oficio radicado en ventanilla única 06545.
dc.relationSeixas, G., Grigoraki, L., Weetman, D., Vicente, J. L., Silva, A. C., Pinto, J., Vontas, J. & Sousa, C. A. (2017). Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal). PLoS Neglected Tropical Diseases, 11(7), e0005799. Doi: 10.1371/journal.pntd.0005799.
dc.relationShan, C., Xie, X., Barrett, A. D., García-Blanco, M. A., Tesh, R. B., da Costa Vasconcelos, P. F., Vasilak, N., Weaver, S.C. & Shi, P. Y. (2016). Zika Virus: Diagnosis, therapeutics, and vaccine. ACS Infectious Diseases, 2(3), 170-172. Doi: 10.1021/acsinfecdis.6b00030.
dc.relationShetty, V., Sanil, D. & Shetty, N. J. (2013). Insecticide susceptibility status in three medically important species of mosquitoes, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, from Bruhat Bengaluru Mahanagara Palike, Karnataka, India. Pest Management Science, 69(2), 257-267. Doi: 10.1002/ps.3383.
dc.relationSigel, E. & Steinmann, M. (2012). Structure, function, and modulation of GABAA receptors. Journal of Biological Chemistry, 287(48), 40224-40231. Doi: 10.1074/jbc.R112.386664.
dc.relationSigma-Aldrich. (2021). Brilliant Blue G. [En línea]. Consultado el 12 de febrero de 2021, de la fuente: https://www.sigmaaldrich.com/catalog/product/sial/b0770?lang=en&region=CO&cm_sp=Insite-_-caContent_prodMerch_gruCrossEntropy-_-prodMerch10-2
dc.relationSilman, I. & Sussman, J. L. (2008). Acetylcholinesterase: how is structure related to function? Chemico-Biological Interactions, 175(1-3), 3-10. Doi: 10.1016/j.cbi.2008.05.035.
dc.relationSmith, L. B., Kasai, S. & Scott, J. G. (2016). Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology, 133(1), 1-12. Doi: 10.1016/j.pestbp.2016.03.005.
dc.relationSmith, L. B., Sears, C., Sun, H., Mertz, R. W., Kasai, S. & Scott, J. G. (2019). CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr. Pesticide Biochemistry and Physiology, 160(1), 119-126. Doi: 10.1016/j.pestbp.2019.07.011.
dc.relationSoltaninejad, K. & Shadnia, S. (2014). History of the use and epidemiology of organophosphorus poisoning. En: Balali-Mood, M. & Abdollahi, M. (eds.), Basic and clinical toxicology of organophosphorus compounds. Londres, Reino Unido: Springer-Verlag (p.p. 25-34). Doi: 10.1007/978-1-4471-5625-3_2
dc.relationSteele, R. W. & Smallman, B. N. (1976). Acetylcholinesterase from the house-fly head. Molecular properties of soluble forms. Biochimica et Biophysica Acta, 445(1), 131-146. Doi: 10.1016/0005-2744(76)90166-2.
dc.relationSuárez, M. F., González, R. & Morales, C. (1998). Temefos resistance to Aedes aegypti in Cali, Colombia. The American Journal of Tropical Medicine and Hygiene, 55(Suppl. 2), 257. On-line ISSN 2665-4385.
dc.relationTabashnik, B. E., Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M. & Carrière, Y. (2014). Defining terms for proactive management of resistance to Bt crops and pesticides. Journal of Economic Entomology, 107(2), 496-507. Doi: 10.1603/ec13458.
dc.relationTang, B. L. (2012). The cell biology of Chikungunya virus infection. Cellular Microbiology, 14(9), 1354-1363. Doi: 10.1111/j.1462-5822.2012.01825.x.
dc.relationTang, H., Hammack, C., Ogden, S. C., Wen, Z., Qian, X., Li, Y., Yao, B., Shin, J., Zhang, F., Lee, E.M, Christian, K.M., Didier, R.A., Jin, P., Song, H. & Ming, G. L. (2016). Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell, 18 (5), 587-590. Doi: 10.1016/j.stem.2016.02.016.
dc.relationTaylor, P. & Radic, Z. (1994). The cholinesterases: from genes to proteins. Annual Review of Pharmacology and Toxicology, 34(1), 281-320. Doi: 10.1146/annurev.pa.34.040194.001433.
dc.relationThirugnanam, M. & Forgash, J. (1977). Environmental impact of mosquito pesticides: toxicity and anticholinesterase activity of chlorpyrifos to fish in a salt marsh habitat. Archives of Environmental Contamination and Toxicology, 5(4), 415-425.
dc.relationTian, Y. (2018a). A kind of 4- cyclopentyl-methyls piperidines amide compound and its application in plant nematode diseases are prevented. Peop. Rep. China, Chinese Patent nº CN 108047124 (A).
dc.relationTian, Y. (2018b). A kind of 4- benzyl piperidines class amide compound and its application in plant nematode diseases are prevented. Peop. Rep. China, Chinese Patent nº CN 107987012 (A).
dc.relationTimmermann, S. E. & Briegel, H. (1999). Larval growth and biosynthesis of reserves in mosquitoes. Journal of Insect Physiology, 45(1), 461-470. Doi: 10.1016/s0022-1910(98)00147-4.
dc.relationTimperley, C. M. & Cooper, N. (2015). Chapter 5 - Thiophosphoryl Compounds. En: Timperley, C. M. (ed.) Best Synthetic. Methods organophosphorus (V) chemistry, Nueva York, Estados Unidos: Academic Press (p.p. 563-632). Doi: 10.1016/B978-0-08-098212-0.00005-4.
dc.relationTopal, A., Şişecioğlu, M., Atamanalp, M. Alparslan Işık & Yılmaz, B. (2016). The in vitro and in vivo effects of chlorpyrifos on acetylcholinesterase activity of rainbow trout brain. Journal of Applied Animal Research, 44(1), 243-247. Doi: 10.1080/09712119.2015.1031776.
dc.relationTorres, E. A. (2018). Evaluación de la actividad larvicida y del efecto in vivo de análogos hidrogenados y oxidados de la piperidina, en la actividad de la acetilcolinesterasa de larvas de Aedes aegypti. Informe del Proyecto del programa de Jóvenes Investigadores-Colciencias, Bucaramanga.
dc.relationUniProt. (2020). Q6A2E2, gene: ace-1, acetylcholinesterase Aedes aegypti. [En línea]. Consultado el 30 de diciembre de 2020, de la fuente: http://www.uniprot.org/uniprot/Q6A2E2
dc.relationUrdaneta-Márquez, L. & Failloux, A.-B. (2011). Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infections, Genetics and Evolution, 11(2), 253-261. Doi: 10.1016/j.meegid.2010.11.020.
dc.relationValle, D., Fernandes Bellinato, D. F., Fernandes Viana-Medeiros, P. F., Pereira Lima, F. B., Junior, A. J. (2019). Resistance to temephos and deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, 114(1): e180544. Doi: 10.1590/0074-02760180544.
dc.relationVargas-Méndez, L. Y. & Kouznetsov, V. V. (2007a). 4-Aminopiperidinas y espiro-4-piperidinas: importancia farmacológica y esfuerzos sintéticos. Universitas Scientiarum, 12(2), 23-45. http://hdl.handle.net/10554/31195
dc.relationVargas-Méndez, L. Y. & Kouznetsov, V. V. (2007b). An efficient synthesis of new 1-H-4´-methyl-3´,4´-dihydrospiro[piperidine-4,2’(1’H)quinoline] scaffolds. Tetrahedron Letters, 48(14), 2509-2512. Doi: 10.1016/j.tetlet.2007.02.037.
dc.relationVerlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H.-J., Blenau, W. & Broeck, J. V. (2010). The role of octopamine in locusts and other arthropods. Journal of Insect Physiology, 56(8), 854-867. Doi: 10.1016/j.jinsphys.2010.05.018.
dc.relationVerma, R., Sahu, R. & Holla, V. (2014). Neurological manifestation of dengue infection: A review. Journal of Neurological Sciences, 346(1-2), 26-34. Doi: 10.1016/j.jns.2014.08.044.
dc.relationVoet, G. V. D. (2011). Biochemistry (4 ed.). Neva York, Estados Unidos: John Wiley & Sons Inc (p. 1428). ISBN 978-0-470-57095-1.
dc.relationVontas, J., Kioulos, E., Pavlidi, N., Morou, E., della Torre, A. & Ranson, H. (2012). Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pest. Biochemestry and Physiology, 104(2), 126-131. Doi: 10.1016/j.pestbp.2012.05.008.
dc.relationVontas, J., Katsavou, E. & Mavridis, K. (2020). Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pesticide Biochemistry and Physiology, 170, 104666. Doi: 10.1016/j.pestbp.2020.104666.
dc.relationWeaver, S. C. (2018). Prediction and prevention of urban arbovirus epidemics: A challenge for the global virology community. Antiviral Research, 156(1), 80-84. Doi: 10.1016/j.antiviral.2018.06.009.
dc.relationWeill, M., Fort, P., Berthomieu, A., Dubois, M. P., Pasteur, N. & Raymond, M. (2002). A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proceedings of the Royal Society B - Biological Sciences, 269(1504), 2007-2016. Doi: 10.1098/rspb.2002.2122.
dc.relationWeill, M., Lutfalla, G., Mogensen, K., Chandre, F., Berthomieu, A., Berticat, C., Pasteur, N., Philips, A., Fort, P. & Raymond, M. (2003). Insecticide resistance in mosquito vectors. Nature, 423, 136-137. Doi: 10.1038/423136b.
dc.relationWeill, M., Malcom, C., Chandre, F., Mogense, K., Berthomieu, A., Marquine, M. & Raymond, M. (2004a). The unique mutation in ace‐1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Molecular Biology, 13(1), 1-7. Doi: 10.1111/j.1365-2583.2004.00452.x.
dc.relationWeill, M., Berthomieu, A., Berticat, C., Lutfalla, G., Nègre, V., Pasteur, N., Philips, A., Leonetti, J.P., Fort, P. & Raymond, M. (2004b). Insecticide resistance: a silent base prediction. Current Biology, 14(14), R552. Doi: 10.1016/j.cub.2004.07.008.
dc.relationWeintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. (2003). Recent advances in the synthesis of piperidones and piperidines. Tetrahedron, 59(17), 2953-2989. Doi: 10.1016/S0040-4020(03)00295-3.
dc.relationWilliams, A. J., Thomas, N. L. & George, C. H. (2018). The ryanodine receptor: advances in structure and organization. Current Opinion in Physiology, 1(1), 1-6. Doi: 10.1016/j.cophys.2017.10.003.
dc.relationWoolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. (2012). Human viruses: Discovery and emergence. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1604), 2864-2871. Doi: 10.1098/rstb.2011.0354.
dc.relationWolstenholme, J. (2012). Glutamate-gated Chloride Channels. The Journal of Biological Chemistry, 287(48), 40232-40238. Doi: 10.1074/jbc.R112.406280.
dc.relationWorek, F., Eyer, P., & Thiermann, H. (2012). Determination of acetylcholinesterase activity by the Ellman assay: A versatile tool for in vitro research on medical countermeasures against organophosphate poisoning. Drug Testing and Analysis 4(3-4), 282-291. Doi: 10.1002/dta.337.
dc.relationWorld Health Organization, (WHO). (1957). Seventh Report Expert Committee on Insecticides. WHO Technical Report Series No. 125 (p.p. 31).
dc.relationWorld Health Organization, (WHO). (1975). Empleo inocuo de plaguicidas: clasificación de los plaguicidas por el peligro que presenta. [En línea]. Consultado el 29 de enero de 2021, de la fuente: https://apps.who.int/iris/bitstream/handle/10665/103380/WHA28_14_spa.pdf?seque nce=1&isAllowed=y
dc.relationWorld Health Organization, (WHO). (1981). Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. World Health Organization, WHO/VBC/81.807, 1-6.
dc.relationWorld Health Organization, (WHO). (2005). Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization, WHO/CDS/WHOPES/GCDPP/2005.11, 1-41.
dc.relationWorld Health Organization, (WHO). (2011). Global insecticide use for vector-borne disease control: A 10-year assessment (2000-2009). Geneva, Italy: World Health Organization (41 p.). ISBN: 9789241502153.
dc.relationWorld Health Organization, (WHO). (2016). Monitoring and managing insecticide resistance in Aedes mosquito populations: Interim guidance for entomologists. Geneva, Italy: World Health Organization (p.p. 11).
dc.relationWorld Health Organization, (WHO). (2017). Chikungunya. Fact sheets. [En línea]. Consultado Consultado el 8 de marzo de 2020, de la fuente: http://www.who.int/mediacentre/ factsheets/fs327/en/
dc.relationWorld Health Organization, (WHO). (2018a). Zika Virus: Fact sheets. [En línea]. Consultado el 8 de marzo de 2020, de la fuente: http://www.who.int/mediacentre/factsheets/zika/en/
dc.relationWorld Health Organization, (WHO). (2018b). Dengue control. Control strategies. [En línea]. Consultado el 8 de marzo de 2020, de la fuente: https://www.who.int/ denguecontrol/control_strategies/en/
dc.relationWorld Health Organization, (WHO). (2018c). Dengue and sever dengue. Prevention and control. [En línea]. Consultado el 8 de marzo de 2020, de la fuente: https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_2
dc.relationWorld Health Organization, (WHO). (2018d). 2018 Anual review of the Blueprint list of priority diseases. [En línea]. Consultado el 8 de marzo de 2020, de la fuente: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts
dc.relationWorld Health Organization, (WHO). (2020a). Dengue and severe dengue: Fact sheets. [En línea]. Consultado el 8 de marzo de 2020, de la fuente: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
dc.relationWorld Health Organization, (WHO). (2020b). Malaria. [En línea]. Consultado el 8 de marzo de 2020, de la fuente: https://www.who.int/news-room/fact-sheets/detail/malaria
dc.relationYang, Y.C., Lee, S.G. Lee, H.K., Kim, M.K., Lee, S.H. & Lee, H.S. (2002). A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. Journal of Agricultural and Food Chemistry, 50(13), 3765-3767. Doi: 10.1021/jf011708f.
dc.relationZalucki, M. P. & Furlong, M. J. (2017). Behavior as a mechanism of insecticide resistance: evaluation of the evidence. Current Opinion in Insect Science, 21(1), 19-25. Doi: 10.1016/j.cois.2017.05.006.
dc.relationZambach, W., Hueter, O. F., Wenger, J., Goeghova, M., Pitterna, T., Maienfisch, P. & Muehlebach, M. (2009). Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides. Syngenta Participations, UK Patent nº WO 2009049851 (A1).
dc.relationZara, A. A., dos Santos, S. A., Fernandes-Oliveira, E. S., Gomes, C. R. & Coelho, G. E. (2016). Aedes aegypti control strategies: A review. Epidemiologia e Serviços de Saúde, 25(2), 391-404. Doi: 10.5123/s1679-49742016000200017.
dc.rightsAcceso cerrado
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleActividad larvicida y efecto residual de piperidinas e insecticidas organofosforados en las proteínas de Aedes aegypti (Díptera: Culicidae)


Este ítem pertenece a la siguiente institución