dc.contributorZamora Ávila, David Andres
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001370654
dc.creatorRubiano Perilla, Juan Sebastian
dc.creatorVera Quintero, Laura Johanna
dc.date.accessioned2020-02-07T00:25:17Z
dc.date.available2020-02-07T00:25:17Z
dc.date.created2020-02-07T00:25:17Z
dc.date.issued2020-02-06
dc.identifierRubiano, S. & Vera, L. (2020). Evaluación de la representatividad de la calidad del agua en los puntos de monitoreo de la RCHB a partir de un análisis multivariado de cargas contaminantes (Trabajo de pregrado de Ingeniería Ambiental). Universidad Santo Tomás. Bogotá, Colombia.
dc.identifierhttp://hdl.handle.net/11634/21489
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe Water Quality Network of Bogotá is established in the 4 main rivers belonging to the city of Bogotá which are: Torca, Salitre, Fucha and Tunjuelo, this monitoring network has remained static for more than ten (10) years without taking into account that the quality and quantity of water in the city is highly dynamic in time and space, and that urban and industrial development processes have changed since this management tool came into operation in 2006. In addition, at the same time as these changes, the hydrology of the basins has been modified by the effects of the increase in impermeable areas due to the expansion of urban infrastructure. Flow rates and concentrations of different determinants of water quality in the water quality network of Bogotá have made it possible to characterise the behaviour of the water resource in the urban basins of the City. However, evaluating these components independently to determine the relevance of a monitoring point limits the findings, since urban hydrology corresponds to a non-linear system that relates the quantity and quality of water from rain and wastewater collection systems, and the alterations to the system as a consequence of urban expansion. Therefore, in the present investigation an analysis of the representativeness of the monitoring points was carried out through a multivariate evaluation of the polluting loads of the RCHB for the time period from 2006 to 2018. First, a spatial characterization was made on the influence area of the water quality network of Bogotá belongs, in order to know the hydrography and hydrology conditions, and also with the data provided by the District Secretariat of Environment was calculated of the polluting load integrating concentrations of quality variables (BOD5, COD, TSS, Total Nitrogen, Total Phosphorus, SAAM and Fats and Oils) and streamflows. The analysis of the representativeness of the monitoring points was done through the application of different methods, in this way the detection of atypical data through the Mahalanobis distance algorithm was first evaluated, obtaining a maximum percentage of up to 22.77 % of atypical values in the monitoring points network. In accordance with the above, a new, more reliable database without outliers was obtained to be used in the selection of the most important quality and quantity variables that represent the dynamics of the water resource by river using the Random Forest algorithm. Finally, the load data of the most important variables per river were evaluated with the grouping algorithm Expectation Maximization to determine the number of monitoring points that represent the dynamics of the polluting loads in the water quality network of Bogotá, thus obtaining an optimal number of monitoring points per River of 4 to Torca, 5 to Salitre, 6 to Fucha and 7 to Tunjuelo. The development of this project seeks to provide knowledge on the application of methodologies to optimize the monitoring activity, and thus improve the management processes, control and monitoring of water resources in the city of Bogotá. Keywords: Water Quality Network, Mahalanobis distance, Random Forest, Expectation Maximization, pollutant load.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relationW. a. B. J. M. G. H. Qiuwen Chen, «Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses,» Journal of Environmental Management, vol. 110, pp. 116-124, 15 noviembre 2012.
dc.relationS. Behmel, M. Damour, R. Ludwig, M.J. Rodriguez, «Water quality monitoring strategies, A review and future perspectives», Science of the Total Environment, pp. 1313-1315, 8 julio 2016.
dc.relationA. S. Y. S. Vishwanathan, «Introduction to Machine Learning», Reino Unido: Cambridge University Pres, 2008
dc.relationSecretaria Distrital de Ambiente, «Calidad del sistema hídrico de Bogotá», 1a ed, Editorial Pontificia Universidad Javeriana, pp. 23-27, 92, 110, Bogotá, 2008.
dc.relationF. Pérez, D. Zamora, «Informe técnico: descripción y contexto de las cuencas del distrito capital (Torca, Salitre, Fucha y Tunjuelo)», Secretaria Distrital de Ambiente, pp. 10-19, Septiembre 2015.
dc.relationEmpresa de alcantarillado acueducto y aseo de Bogotá, «Plan de identificación de corrección de conexiones erradas», pp. 27-28, Agosto 2017.
dc.relationDepartamento Administrativo de Función Pública. (2012, Diciembre, 21). Decreto 2667, Por el cual se reglamenta la tasa retributiva por la utilización directa e indirecta del agua como receptor de los vertimientos puntuales, y se toman otras determinaciones, Art. 28. [En línea]. Disponible: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=51042#0.
dc.relationUniversidad de los Andes (UniAndes), «Concentraciones de referencia para los vertimientos industriales realizados a la red de alcantarillado y de los vertimientos industriales y domésticos efectuados a cuerpos de agua de la ciudad de Bogotá», Informe Objetivos de Calidad, Secretaría Distrital de Ambiente - Universidad de Los Andes Convenio 045 de 2007. Numeral 5. Bogotá D.C, Colombia, 2017.
dc.relationB. Rocamora, A. García, B. Martínez, « Inferencia estadística (intervalos de confianza y p-valor). Comparación de dos poblaciones (test de comparación de medias, comparación de dos proporciones, comparación de dos varianzas)», Universidad Cardenal Herrera, pp. 6-7.
dc.relationEfron, B. «Bootstrap Methods: Another Look at the Jackknife». Ann. Statist. pp. 1-26, 1979.
dc.relationVergara, J. Ramírez, J. Rojas and S. Guerrero, «Métodos de remuestreo Bootstrap y Jackknife en análisis de sobreviviencia», in XXVI Simposio de Estadística, Sincelejo, Sucre, 2016, p. 3.
dc.relationS. Gil, «Bootstrap en poblaciones finitas». Granada, España: Editorial Universitaria - UGR, 2014, pp. 12-14.
dc.relationA. Villalobos, M. Lagos and N. Gómez, «Intervalos de confianza Bootstrap para índices de diversidad». Chile: Universidad del Bio Bio, departamento de estadística, 2014, pp. 16-21.
dc.relationM. Quaglino y J. Merello, «Métodos multivariados en estudios de vulnerabilidad social en la provincia de Santa Fe», Noviembre 2012.
dc.relationS. Matsumoto, «Comparison of Outlier Detection Methods in Fault proneness Models», Proceedings of the First international Symposium on Empirical Software Engineering and Measurement, Madrid, España, Septiembre, 2007.
dc.relationK. Tiwary, «Selecting the Appropriate Outlier Treatment for Common Industry SAS», Conference Proceedings: NESUG 2007, Baltimore, Maryland, Noviembre 2007.
dc.relationArcher, V. Kimes, «Empirical characterization of random forest variable importance measures», Science of the Total Environment, pp. 2251-2260, 30 agosto 2007.
dc.relationR. F. Medina-Merino and C. I. Ñique-Chacón, «Bosques aleatorios como extensión de los árboles de clasificación con los programas R y Python», Interfaces, ed.10, pp. 165, 2017.
dc.relationA. Dempster, N. Laird y D. Rubin, «Maximum likelihood from incomplete data via the EM algorithm», Journal of the Royal Statistical Society, Series B (Methodological), pp. 1-38, 1977.
dc.relationJ. Li and A. Nehorai, «Gaussian mixture learning via adaptive hierarchical clustering», Signal Processing, vol. 150, pp. 116-121, 2018.
dc.relationV. V. Raghavan, V. N. Gudivada and V. Govindaraju, «Cognitive Computing: Theory and Applications», Amsterdam, Netherlands, 2016. Disponible: https://doi.org/10.1016/bs.host.2016.07.005.
dc.relationO. Boubaker, «Recent Advances in Chaotic Systems and Synchronization», Reino Unido, 2019. Disponible: https://doi.org/10.1016/B978-0-12-815838-8.00007-8.
dc.relationÁ Gómez Losada, «Modelos De Mixturas Finitas Para La Caracterización Y Mejora De Las Redes De Monitorización De La Calidad Del Aire», Universidad de Granada, 2014.
dc.relationE. J. Wegman and D. B. Carr, «26 Statistical graphics and visualization», Handbook of Statistics», vol. 9, pp. 857-958, 1993. Disponible: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/S0169-7161(05)80150-6.
dc.relationJ. Han, M. Kamber and J. Pei, «12 - Outlier Detection», Data Mining, ed., pp. 543-584, 2012. Disponible: https://doi.org/10.1016/B978-0-12-381479-1.00012-5.
dc.relationDANE, «Encuesta anual manufacturera, información por localidades», Bogotá, Noviembre, 2006.
dc.relationW. K. Dodds and M. R. Whiles, «Chapter 18 - Trophic State and Eutrophication», Freshwater Ecology (Third Edition) », pp. 537-581, 2020. Disponible: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/B978-0-12-813255-5.00018-1.
dc.relationMinisterio de ambiente y desarrollo sostenible. (2018, Agosto, 03). Resolución 1484, Por el cual se asume la competencia del proyecto “Relleno sanitario Doña Juana” y se toman otras determinaciones, [En línea]. Disponible: http://www.minambiente.gov.co/images/normativa/app/resoluciones/a4-RES%201484%20DE%202018.pdf
dc.relationD. Puri, K. Borel, C. Vance, & R. Karthikeyan, «Optimization of a water quality monitoring network using a spatially referenced water quality model and a genetic algorithm». Water, vol. 9, no. 704, pp.1-11, 2017. Disponible: https://doi.org/10.3390/w9090704.
dc.relationHilundo, M., Kelderman, P., & O´keeffe, J. H. (2008). «Design of a water quality monitoring network for the Limpopo river basin in Mozambique». Physics and Chemistry of the Earth, 33(8), 655-665. doi:10.1016/j.pce.2008.06.055
dc.relationY.Icaga, «Genetic algorithm usage in water quality monitoring networks optimization in Gediz (turkey) river basin. Environmental Monitoring and Assessment», vol.108, pp. 261-277, 2005. Disponible: https://doi.org/10.1007/s10661-005-4328-z.
dc.relationOrganización para la Cooperación y el Desarrollo Económico (OCDE), “¿Cómo calcular el cambio del valor del peso colombiano en el tiempo?”, Colombia, 2019.
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCC0 1.0 Universal
dc.titleEvaluación de la representatividad de la calidad del agua en los puntos de monitoreo de la RCHB a partir de un análisis multivariado de cargas contaminantes
dc.typebachelor thesis


Este ítem pertenece a la siguiente institución