dc.contributorGuarnizo Marín, José Guillermo
dc.contributorCamacho Poveda, Edgar Camilo
dc.contributorhttps://orcid.org/0000-0002-8401-4949
dc.contributorhttps://orcid.org/0000-0002-6084-2512
dc.contributorhttps://scholar.google.com/citations?hl=es&user=3JSJ0C4AAAAJ
dc.contributorhttps://scholar.google.com/citations?hl=es&user=tJG988kAAAAJ
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084&lang=es
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000855847&lang=es
dc.contributorUniversidad Santo Tomás
dc.creatorRincón Martínez, Julián
dc.creatorPineda Gonzalez, Gustavo Alonso
dc.date.accessioned2022-01-28T20:11:28Z
dc.date.available2022-01-28T20:11:28Z
dc.date.created2022-01-28T20:11:28Z
dc.date.issued2022-01-24
dc.identifierRincón Martínez, J. y Pineda Gonzalez, G. A. (2022). Diseño de un Controlador Aplicado a un Péndulo Invertido Utilizando Estrategias Basadas en Aprendizaje de Máquina [Tesis de pregrado, Universidad Santo Tomás] Repositorio institucional
dc.identifierhttp://hdl.handle.net/11634/42773
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThis document presents the development of a controller applied to a simple inverted pendulum, using strategies based on machine learning. For the development of this project, a simulated platform is used in the Simulink software, which performs a respective characterization of the system and a representation of the plant from a block diagram implemented in this Software. In this document, the non-linear equations of the plant are shown so that, based on its behavior, a control based on neural networks is designed that is capable of stabilizing the angular position of the inverted pendulum around a specific work point. The development of the project is divided into 4 important phases. The first phase consists of knowing the input and output variables of the plant that will be used for the design of the neural network. The input variable refers to the voltage injected into the plant, while the output variables refer to the angles of the pendulum and the rotating arm. The equations that describe the behavior of the inverted pendulum system are also shown. In the second phase, a review of the state of the art is made, this in order to observe methodologies implemented in previous works, taking as a starting point some machine learning methods that can be used for angular position control in a pendulum. The third phase consists of obtaining the plant data that will be used in the design of the neural networks as a set of training and testing data. From the data obtained in the third phase, in the fourth phase the neural network is implemented with its respective training and it will be in charge of stabilizing the pendulum. The experimental results that were carried out on the implemented neural networks are presented, taking into account different tests carried out, making changes in parameters such as delays, cycles, sampling frequency or input data. An analysis of these tests and of the graphs obtained from the system from the error parameter is also made, in order to observe the behavior of the pendulum once the neural network has been trained.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationEthem Alpaydin. Introduction to Machine Learning. 4.a ed. MIT Press Academic, 2020.
dc.relationMaría M. Seron. «Sistemas No Lineales». En: Universidad Nacional de Rosario (2000), págs. 7-8.
dc.relationM. J. G. Guarnizo, R. C. L. Trujillo y M. J. A. Guacaneme. «Modeling and control of a two DOF helicopter using a robust control design based on DK iteration». En: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society. 2010, págs. 162-167.
dc.relationGerson. Figueroa. «Análisis de un péndulo invertido mediante técnicas de control inteligente ». En: Instituo Politécnico Nacional (2013), págs. 1-172.
dc.relationGeun Hyeong y Seul Jung. «Control of inverted pendulum system using a neuro-fuzzy controller for intelligent control education». En: 2008 IEEE International Conference on Mechatronics and Automation. IEEE, 2008, págs. 965-970.
dc.relationAlexander Winkler y Jozef Suchý. «Identification and controller design for the inverted pendulum actuated by a position controlled robot». En: 18th International Conference on Methods Models in Automation Robotics (MMAR)". IEEE, 2013, págs. 285-263.
dc.relationRichard F Chidzonga y Fredson. A. Phiri. «Stabilizing an inverted pendulum on an airbed track». En: AFRICON Conference 2007. IEEE, 2007, págs. 1-7.
dc.relationJavier Aracil y Francisco Gordillo. «The inverted pendulum: a benchmark in nonlinear control». En: Proceedings World Automation Congress, 2004. IEEE, 2004, págs. 468-482.
dc.relationNenad Muskinja y Boris Tovornik. «Swinging up and stabilization of a real inverted pendulum ». En: IEEE Transactions on Industrial Electronics 53.2 (2006), págs. 631-639.
dc.relationWarren N. White y col. «Design, build, and test of an autonomous inverted pendulum cart». En: 2013 American Control Conference. IEEE, 2013, págs. 5893-5898.
dc.relationKhizir Mahmud. «Design and analysis of the control of an inverted pendulum system by Matlab». En: 2013 IEEE Global High Tech Congress on Electronics. IEEE, 2013, págs. 207-211.
dc.relationSamatthachai Panya y col. «Hybrid Controller for Inverted Pendulum System». En: 2008 International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2008, págs. 385-388.
dc.relationJu-Bong Kim y col. «Imitation Reinforcement Learning-Based Remote Rotary Inverted Pendulum Control in OpenFlow Network». En: IEEE Access 7 (2019), págs. 36682-36690.
dc.relationTakanori Shibata y col. «Skill based control by using fuzzy neural network for hierarchical intelligent control». En: 1992 IJCNN International Joint Conference on Neural Networks. IEEE, 1992, págs. 81-86.
dc.relationBavarian B. «Introduction to neural networks for intelligent control». En: IEEE Control Systems Magazine 8.2 (1988), págs. 3-7.
dc.relationKumpati S Narendra y Snehasis Mukhopadhyay. «Intelligent control using neural networks ». En: IEEE Control Systems Magazine 12.2 (1992), págs. 11-18.
dc.relationChrysostomos Stylios y Peter Groumpos. «Fuzzy cognitive maps: a soft computing technique for intelligent control». En: 2000 IEEE International Symposium on Intelligent Control. Held jointly with the 8th IEEE Mediterranean Conference on Control and Automation (Cat. No.00CH37147). IEEE, 2000, págs. 97-102.
dc.relationJyoti Krishen y Victor M Becerra. «Efficient fuzzy control of a rotary inverted pendulum based on LQR mapping». En: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006, págs. 2701-2706.
dc.relationAmmar Al-Jodah, Hassan Zargarzadeh y Maythem K Abbas. «Experimental verification and comparison of different stabilizing controllers for a rotary inverted pendulum». En: 2013 IEEE International Conference on Control System, Computing and Engineering. IEEE, 2013, págs. 417-423.
dc.relationMonica Roman, Eugen Bobasu y Dorin Sendrescu. «Modelling of the rotary inverted pendulum system». En: 2008 IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE, 2008, págs. 141-146.
dc.relationP. Karam J. Apkarian y M. Lévis. «Rotary Inverted Pendulum Experiment for MATLAB R /Simulink R Users». En: Quanser Inc. (2012), págs. 1-6.
dc.relationTianxiao Liu. «U.S. Pandemic Prediction Using Regression and Neural Network Models». En: 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI). IEEE, 2020, págs. 351-354.
dc.relationTushar Verma y col. «Data Analysis to Generate Models Based on Neural Network and Regression for Solar Power Generation Forecasting». En: 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS). IEEE, 2016, págs. 97-100.
dc.relationAakanksha Sharaff y Samuel Robin Roy. «Comparative Analysis of Temperature Prediction Using Regression Methods and Back Propagation Neural Network». En: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2018, págs. 739-742.
dc.relationR. C. L. Trujillo M. J. G. Guarnizo y M. J. A. Guacaneme. «General Inverse Neural Current Control for Buck Converter». En: Novel Algorithms and Techniques In Telecommunications, Automation and Industrial Electronics. Springer, Dordrech (2008), págs. 117-122.
dc.relationRazeef Mohd, Muheet Ahmed Butt y Majid Zaman Baba. «SALM-NARX: Self Adaptive LM- based NARX model for the prediction of rainfall». En: 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on. IEEE, 2018, págs. 580-585. DOI: 10.1109/I-SMAC.2018.8653747.
dc.relationOsorio Zúñiga Carlos Andrés. «DISEÑO, CONSTRUCCION Y CONTROL DE UN PENDULO INVERTIDO ROTACIONAL UTILIZANDO TECNICAS LINEALES Y NO LINEALES ». En: Universidad Nacional de Colombia (2009), págs. 13-14.
dc.relationHill Rick. «Inverted Pendulum Control». En: MATLAB Central File Exchange (2013).
dc.relationAtria Innovation. Qué son las redes neuronales y sus funciones. Oct. de 2019. URL: https: //www.atriainnovation.com/que-son-las-redes-neuronales-y-susfunciones/#:~: text=Las-redes-neuronales-artificiales-son,entrada20hastagenerar- una-salida.
dc.relationC. Luis y M. Diego. «Redes Neuronales». En: Cinvestav (2020).
dc.relationInteractive Chaos. Backpropagation | Interactive Chaos. URL: https://interactivechaos. com/es/manual/tutorial-de-machine-learning/backpropagation.
dc.relationIsis Bonet y col. «Redes neuronales recurrentes para el análisis de secuencias». En: 2007 Revista Cubana de Ciencias Informáticas 1.2 (2007), págs. 48-57.
dc.relationJordi Torres. Redes Neuronales Recurrentes. Mar. de 2021. URL: https://torres.ai/ redes-neuronales-recurrentes/.
dc.relationGalán Pablo. «INCORPORACIÓN DE INTELIGENCIA ARTIFICIAL EN GEMELO VIRTUAL BÁSICO DE ROBOT INDUSTRIAL». En: UNIVERSIDAD DE CANTABRIA (2019).
dc.relationCalvo Diego. «Red Neuronal Recurrente – RNN». En: Diego Calvo (2018).
dc.relationR. Aguilar y A. Martín. «RED NEURONAL AUTORREGRESIVA NO LINEAL CON ENTRADAS EXÓGENAS PARA LA PREDICCIÓN DEL ELECTROENCEFALOGRAMAFETAL ». En: Department of Computer and Systems Engineering, University of La Laguna (2017), pág. 2.
dc.relationVictor Rodriguez, Jaime Garzón y Jesús López. «Control Neuronal por Modelo Inverso de un Servosistema Usando Algoritmos de Aprendizaje Levenberg-Marquardt y Bayesiano ». En: VIII Congreso de la Asociación Colombiana de Automática. Universidad Tecnológica de Bolívar, 2009, págs. 1-6.
dc.relationJaime Durán. Todo lo que Necesitas Saber sobre el Descenso del Gradiente Aplicado a Redes Neuronales. Sep. de 2019. URL: https : / / medium . com / metadatos / todo - lo - que- necesitas- saber- sobre- el- descenso- del- gradiente- aplicadoa- redes-neuronales-19bdbb706a78.
dc.relationSergio Ledesma. «Las Redes Neuronales implementación y consideraciones prácticas». En: Fifth Mexican International Conference on Artificial Intelligence. Universidad de Guanajuato, 2016, págs. 1-50.
dc.relationJose Martinez Heras. Error Cuadrático Medio para Regresión. Oct. de 2020. URL: https: //www.iartificial.net/error-cuadratico-medio-para-regresion/#: ~:text=El-Error-Cuadr%C3%A1tico-Medio-es,podremos-indicar-elresultado- correcto.
dc.relationIBM. Acerca de la regresión lineal. 2020. URL: https://www.ibm.com/co-es/analytics/ learn/linear-regression#:~:text=%C2%BFQu%C3%A9-es-la-regresi%C3% B3n-lineal,variable-se-denomina-variable-independiente.
dc.relationLuis Garrido. «Identificación, estimación y control de sistemas no-lineales mediante RGO». En: Universidad Carlos III de Madrid (1999).
dc.relationNational Instruments. Adquirir una Señal Analógica: Ancho de Banda, Teorema de Muestreo de Nyquist y Aliasing. 2019. URL: https://www.ni.com/es- co/innovations/ white-papers/06/acquiring-an-analog-signal--bandwidth--nyquistsampling- theorem-.html.
dc.relationU. Francisco. «Estrategia de identificación dinámica no lineal basada en NARX para fuentes de generación distribuida acompladas electrónicamente a Micro-Redes AC/DC». En: Universidad Politécnica Salesina - SEDE QUITO (2020), pág. 34.
dc.relationM. Moumouni Hamidou y N. Talibi Soumaïla. «Electrical Charge of Niamey City Modelisation by Neural Network». En: Sci. J. Energy Eng., vol. 7 (2019), pág. 13.
dc.relationZina Boussaada y col. «A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation». En: The 10th International Conference on Sustainable Energy and Environmental Protection. Vol. 11. 3. IEEE, 2018, pág. 620.
dc.relationLuis Gonzaga Baca Ruiz y col. «An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings». En: Energies 9.9 (2016).
dc.relationCasimiro Rocha y Josér Escorcia. «Sistema de Visión Artificial para la Detección y el Reconocimiento de Señales de Tráfico Basado en Redes Neuronales». En: 2010 LACCEI Latin American and Caribbean Conference for Engineering and Technology. 2010.
dc.relationLlano. L y Hoyos. A. «Comparación del Desempeño de Funciones de Activación en Redes Feedforward para aproximar Funciones de Datos con y sin Ruido.» En: Universidad Nacional de Colombia (2007).
dc.relationI. Maldonado y A. Zabidi. «Estimación de los parámetros de un modelo haciendo uso de correspondencias con incertidumbre». En: Centro de Investigacion en Matematicas, A.C - CIMAT (2011), págs. 20-25.
dc.relationNadiah Mohamad y col. «Comparison between Levenberg-Marquardt and Scaled Conjugate Gradient training algorithms for Breast Cancer Diagnosis using MLP». En: 6th International Colloquium on Signal Processing its Applications. IEEE, 2010, págs. 1-7.
dc.relationJ. Maria y R. Diego. «Desarrollo y evaluación de un control Neuro-Difuso tipo ANFIS frente a un control PID convencional aplicado al péndulo invertido». En: Universidad Politécnica Salesiana (2016).
dc.relationk. Maher. «Estudio comparativo entre el control PID Clásico y el Control PID Fraccionario alpicado al sistema del péndulo invertido». En: Universidad Técnológica de Pereria (2020), págs. 98-106.
dc.relationKhushboo Barya, Sheela Tiwari y Rameshwar Jha. «Comparison of LQR and robust controllers for stabilizing inverted pendulum system». En: 2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES. IEEE, 2010, págs. 300-304.
dc.relationFaiber Robayo, Ana Barrera y Laura Polanco. «Desarrollo de un controlador basado en redes neuronales para un sistema multivariable de nivel y caudal». En: Revista Ingeniería y Región 14.2 (2015), págs. 43-54.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDiseño de un controlador aplicado a un péndulo invertido utilizando estrategias basadas en aprendizaje de máquina
dc.typebachelor thesis


Este ítem pertenece a la siguiente institución