dc.contributorGutierrez Cáceres, Edgar Andres
dc.contributorUniversidad Santo Tomas
dc.creatorAvila Cubides, Julian David
dc.date.accessioned2022-01-26T14:57:09Z
dc.date.available2022-01-26T14:57:09Z
dc.date.created2022-01-26T14:57:09Z
dc.date.issued2022-01-12
dc.identifierAvila, Julian. (2022). Análisis bibliométrico de la investigación sobre sistemas de gestión de riego agrícola automatizados. Articulo de pregrado. Universidad Santo Tomás, Tunja.
dc.identifierhttp://hdl.handle.net/11634/42628
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractScientific and technical research in our country is a set of public policies promoted through programs and plans that articulate and link universities, institutions, and national government agencies, with contributions from the government itself, the private sector, and foreign agents. Scientific and technical production today faces inescapable obstacles, in the context of the information society, which imposes new modes of research. The thing to keep in mind is that the growth of scientific production has become more visible in recent years, and understanding the meaning of large amounts of data requires the introduction of research methods that allow not only simple description and quantification of the problem, but also its explanation, because simply counting the publications is only a first step to understand the state of the art of a phenomenon in the field of science (Salomón & Rodríguez, 2007). The general objective of this work is to offer systematic and structured information on scientific production regarding technological advances in agricultural irrigation management systems at a national and international level, as an instrument for the analysis of opportunities in emerging areas of knowledge and strengths and weaknesses of the system. This work exclusively deals with the research results collected by the visible local, national and international publications in the 2014-2021 period. More than 50 research publications on automated irrigation systems published between 2014 and 2021 from databases such as Web of Science, Science Direct, Scopus, Redalyc, Scielo and indexed journals were analyzed. Keywords, type of document, year, focus, journals, countries, highly cited publications and number of authors were included in the analysis. The number of publications has grown exponentially in recent years. The results indicated that “irrigation management systems” “irrigation in agriculture” and “automated irrigation system” were the most frequent terms in the publication titles.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relationAdu-Manu, K. S., Tapparello, C., Heinzelman, W., Katsriku, F. A., & Abdulai, J.-D. (2017). Water Quality Monitoring Using Wireless Sensor Networks: Current Trends and Future Research Directions. ACM Transactions on Sensor Networks, 13(1), 4:1-4:41. https://doi.org/10.1145/3005719
dc.relationAlam, H. S., Haiyunnisa, T., & Bahrudin. (2015). Comparative Analysis of P, Pi, and PID Controllers Optimized by Genetic Algorithm on Controlling Drip Irrigation System. International Journal of Technology and Engineering Studies, 1(4), 117-122. https://ideas.repec.org/a/apa/ijtess/2015p117-122.html
dc.relationAlarcón-López, Á. H., Arias-Vargas, G., Díaz-Ortiz, C. J., & Sotto-Vergara, J. D. (2018). Sistema de control automático de variables climáticas para optimizar el rendimiento de cultivos bajo cubierta. Universidad Cooperativa de Colombia.
dc.relationAltamirano-Aguilar, A., Valdez-Torres, J. B., Valdez-Lafarga, C., León-Balderrama, J. I., Betancourt-Lozano, M., & Osuna-Enciso, T. (2017). Clasificación y evaluación de los distritos de riego en México con base en indicadores de desempeño. Tecnología y ciencias del agua, 8(4), 79-99. https://doi.org/10.24850/j-tyca-2017-04-05
dc.relationAndrade, M. A., O’Shaughnessy, S. A., & Evett, S. R. (2020). ARSPivot, A Sensor-Based Decision Support Software for Variable-Rate Irrigation Center Pivot Systems: Part A. Development. Transactions of the ASABE, 63(5), 1521-1533. https://doi.org/10.13031/trans.13907
dc.relationAngelopoulos, C. M., Nikoletseas, S., & Theofanopoulos, G. C. (2011). A smart system for garden watering using wireless sensor networks. Proceedings of the 9th ACM international symposium on Mobility management and wireless access, 167-170. https://doi.org/10.1145/2069131.2069162
dc.relationArredondo Salas, S. M., & Wilson, P. N. (2014). A Farmer-Centered Analysis of Irrigation Management Transfer in Mexico. Irrigation and Drainage Systems, 18(1), 89-107. https://doi.org/10.1023/B:IRRI.0000019516.75955.1a
dc.relationBjorneberg, D. L., Ippolito, J. A., King, B. A., Nouwakpo, S. K., & Koehn, A. C. (2020). Moving toward Sustainable Irrigation in a Southern Idaho Irrigation Project. Transactions of the ASABE, 63(5), 1441-1449. https://doi.org/10.13031/trans.13955
dc.relationCabrera, G. H. C. (2015). “Prototipo de control de riego tecnificado aplicando la tecnología del arduino”. Revista Investigaciones Altoandinas, 17(1), 95-102. https://dialnet.unirioja.es/servlet/articulo?codigo=5157112
dc.relationCadavid, V. C., & Garcia, M. F. V. (2020). DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE RIEGO AUTOMATIZADO Y MONITOREO DE VARIABLES AMBIENTALES MEDIANTE IOT EN LOS CULTIVOS URBANOS DE LA FUNDACIÓN MUJERES EMPRESARIAS MARIE POUSSEPIN. 100. https://repository.ucatolica.edu.co/bitstream/10983/25546/1/Tesis%20Fabian%20Vargas-%20Valeria%20Cortes.pdf
dc.relationCastro C., N. D., Chamorro F., L. E., & Viteri M., C. A. (2016). Una red de sensores inalámbricos para la automatización y control del riego localizado. Revista de Ciencias Agrícolas, 33(2), 106. https://doi.org/10.22267/rcia.163302.57
dc.relationCastro, L. B. (2016). SENSOR DE HUMEDAD DEL SUELO TIPO SONDA CON SISTEMA DE MONITOREO PARA APLICACIONES EN AGRICULTURA DE PRECISIÓN. 121. https://repositorio.unillanos.edu.co/bitstream/handle/001/1184/RUNILLANOS%20ELE%200373%20SENSOR%20DE%20HUMEDAD%20DEL%20SUELO%20TIPO%20SONDA%20CON%20SISTEMA%20DE%20MONITOREO%20PARA%20APLICACIONES%20EN%20AGRICULTURA%20DE%20PRECISI%C3%93N%20.pdf?sequence=1&isAllowed=y
dc.relationChiu, Y.-L. J., & Reba, M. L. (2020). Development of a Wireless Sensor Network for Tracking Flood Irrigation Management in Production-Sized Rice Fields in the Mid-South. Applied Engineering in Agriculture, 36(5), 703-715. https://doi.org/10.13031/aea.13962
dc.relationCorbari, C., Salerno, R., Ceppi, A., Telesca, V., & Mancini, M. (2019). Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling. Agricultural Water Management, 212, 283-294. https://doi.org/10.1016/j.agwat.2018.09.005
dc.relationCrespo, M. R. G., Méndez, A. J. L., & Rodríguez, J. B. M. (2008). Plataforma Modular Integrada para sistemas de riego 1. Antecedentes de la solución. Revista Ciencias Técnicas Agropecuarias, 17(3), 56-60. https://www.redalyc.org/articulo.oa?id=93215941012
dc.relationCUZCO, J. C. V., & TENEMAZA, F. D. J. C. (2013). “DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE RIEGO AUTOMATIZADO Y CONTROLADO DE FORMA INALÁMBRICA PARA UNA FINCA UBICADA EN EL SECTOR POPULAR DE BALERIO ESTACIO”. 144. https://dspace.ups.edu.ec/bitstream/123456789/5304/1/UPS-GT000434.pdf
dc.relationDelgado, C., Perez-Ortega, E., & Chavira-Alvarez, A. (2019). Sistema de riego inteligente para el cultivo del nogal. Revista de Ingenieria Innovativa, 1-9. https://doi.org/10.35429/JOIE.2019.11.3.1.9
dc.relationEnciso, J. M., Porter, D., & Périès, X. (s. f.). Uso de sensores de humedad del suelo para eficientizar el riego. 14.
dc.relationGarcía-Hevia, S., Mora-Gutiérrez, M., Cárdenas-López, J. F., Hernández-Cuello, G., & Pérez-Petitón, J. (s. f.). Economic Evaluation of the Irrigation System in the Association Avocado-Guava. Revista Ciencias Técnicas Agropecuarias, 28(3), 1-6. Recuperado 27 de octubre de 2021, de https://www.redalyc.org/journal/932/93260040006/
dc.relationGliessman, S. R. (2013). Agroecología: Plantando las raíces de la resistencia. Agroecología, 8(2), 19-26. https://revistas.um.es/agroecologia/article/view/212151
dc.relationGoap, A., Sharma, D., Shukla, A. K., & Rama Krishna, C. (2018). An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture, 155, 41-49. https://doi.org/10.1016/j.compag.2018.09.040
dc.relationGUIJARRO-Rodríguez, A. A., Torres, L. J. C., PRECIADO-Maila, D. K., & Manzur, B. N. Z. (2018). Sistema de riego automatizado con arduino. 15.
dc.relationGutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. A. (2014). Automated Irrigation System Using a Wireless Sensor Network and GPRS Module. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2013.2276487
dc.relationHamami, L., & Nassereddine, B. (2020). Application of wireless sensor networks in the field of irrigation: A review. Computers and Electronics in Agriculture, 179, 105782. https://doi.org/10.1016/j.compag.2020.105782
dc.relationHANNA Instruments. (s. f.). Los Efectos del Agua de Riego para la Agricultura. Recuperado 22 de octubre de 2021, de https://www.hannacolombia.com/blog/post/43/los-efectos-del-agua-riego-para-la-agricultura.
dc.relationJamroen, C., Komkum, P., Fongkerd, C., & Krongpha, W. (2020). An Intelligent Irrigation Scheduling System Using Low-Cost Wireless Sensor Network Toward Sustainable and Precision Agriculture. IEEE Access, 8, 172756-172769. https://doi.org/10.1109/ACCESS.2020.3025590
dc.relationKannadhasan, s, & Shanmuganantham, M. (2019). Agriculture Monitoring and Smart Irrigation System Based on Wireless Sensors. International Journal of Sensors and Sensor Networks, 7, 51. https://doi.org/10.11648/j.ijssn.20190704.11
dc.relationLiao, R., Zhang, S., Zhang, X., Wang, M., Wu, H., & Zhangzhong, L. (2021). Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept. Agricultural Water Management, 245, 106632. https://doi.org/10.1016/j.agwat.2020.106632
dc.relationLópez-Silva, M., Carmenates-Hernández, D., Mujica-Cervantes, A., & Paneque-Rondon, P. (2019). Efficiency Criteria to Evaluate Sprinkler Irrigation. Revista Ciencias Técnicas Agropecuarias, 28(3), 1-7. https://www.redalyc.org/journal/932/93260040005/
dc.relationMahdizadeh Khasraghi, M., Gholami Sefidkouhi, M. A., & Valipour, M. (2015). Simulation of open- and closed-end border irrigation systems using SIRMOD. Archives of Agronomy and Soil Science, 61(7), 929-941. https://doi.org/10.1080/03650340.2014.981163
dc.relationMamani, M., Villalobos, M., Herrera, R., Mamani, M., Villalobos, M., & Herrera, R. (2017). Sistema web de bajo costo para monitorear y controlar un invernadero agrícola. Ingeniare. Revista chilena de ingeniería, 25(4), 599-618. https://doi.org/10.4067/S0718-33052017000400599
dc.relationMATTA, H. O. (2018). DISTRITOS DE RIESGO EN COLOMBIA: UNA NECESIDAD LATENTE – HIDRACO. http://www.hidraco.co/2020/01/16/distritos-de-riego-en-colombia-una-necesidad-latente/
dc.relationMazzaro, C. (2010). COMUNICAR LA CIENCIA. PERSPECTIVAS, PROBLEMAS Y PROPUESTAS. 7. https://www.redalyc.org/pdf/3331/333127104010.pdf
dc.relationMcCarthy, A., Smith, R., & Hancock, N. (2020). Optimal irrigation of cotton via real-time, adaptive control [Report]. Cotton Research and Development Corporation. https://eprints.usq.edu.au/30768/
dc.relationMunoth, P., Goyal, R., & Tiwari, K. (2018). Sensor based Irrigation System: A Review. International Journal of Engineering Research, 4(23), 5.
dc.relationMuñoz-Carpena, R., & Dukes, M. D. (2019). Automatic Irrigation Based on Soil Moisture for Vegetable Crops. EDIS, 2005(8). https://doi.org/10.32473/edis-ae354-2005
dc.relationO’Shaughnessy, S. A., Andrade, M. A., Colaizzi, P. D., Workneh, F., Rush, C. M., Evett, S. R., & Kim, M. (2020). Irrigation Management of Potatoes Using Sensor Feedback: Texas High Plains. Transactions of the ASABE, 63(5), 1259-1276. https://doi.org/10.13031/trans.13925
dc.relationPopoca, M. C., Marín, F. M. Á., Nolasco, A. Q., Kleisinger, S., Chávez, L. T., & Sáenz, E. M. (2008). Sistema de riego automatizado en tiempo real con balance hídrico, medición de humedad del suelo y lisímetro. Agricultura Técnica en México, 34(4), 459-470. https://www.redalyc.org/articulo.oa?id=60811120009
dc.relationQuiroga, D. C., & Camacho, E. L. C. (2018). PROTOTIPO DE UN SISTEMA AUTOMATIZADO DE RIEGO PARA JARDINES. 80. https://repository.libertadores.edu.co/bitstream/handle/11371/1533/ca%C3%B1ondiana2018.pdf?sequence=1&isAllowed=y
dc.relationRap, E. (2006). The success of a policy model: Irrigation management transfer in Mexico. The Journal of Development Studies, 42(8), 1301-1324. https://doi.org/10.1080/00220380600930606
dc.relationRendón-Sustaita, G. del C., Domínguez-López, J. Á., Martínez-Rodríguez, M. A., Garay-Molina, Ó. A., & Juárez-Pedraza, D. I. (2017). Sistema Inteligente para controlar sistemas de riego en México. Ventana Informática, 37, Article 37. https://doi.org/10.30554/ventanainform.37.2721.2017
dc.relationRodríguez, L. E. (2010). Origen y evolución de la papa cultivada. Una revisión. 10. http://www.scielo.org.co/pdf/agc/v28n1/v28n1a02.pdf
dc.relationSaid Mohamed, E., Belal, AA., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2021.08.007
dc.relationSalomón, Y. P., & Rodríguez, A. M. (2007). Producción científica. Ciencias de la Información, 38(3), 33-38. https://www.redalyc.org/articulo.oa?id=181414861004
dc.relationSangerman-Jarquín, D. M., Núñez Espinoza, J. F., & Navarro-Bravo, A. (2015). Análisis de la colaboración científica en artículos publicados por la Revista Mexicana de Ciencias Agrícolas. I. Revista mexicana de ciencias agrícolas, 6(8), 1867-1877. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-09342015000801867&lng=es&nrm=iso&tlng=es
dc.relationSari, P. A. T., Garcia, C. D. P., MendÃŁa, A. S. G., & MerchÃ, D. F. (2017). Smart Irrigation System for Smart Farming. 8. https://core.ac.uk/download/pdf/301373118.pdf
dc.relationSeethalakshmi, E., Shunmugam, M., Pavaiyarkarasi, R., Joseph, S., & Edward paulraj, J. (2021). An automated irrigation system for optimized greenhouse using IoT. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.636
dc.relationShrivastava, A., Nayak, C. K., Dilip, R., Samal, S. R., Rout, S., & Ashfaque, S. M. (2021). Automatic robotic system design and development for vertical hydroponic farming using IoT and big data analysis. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.07.294
dc.relationStone, K. C., Bauer, P. J., O’Shaughnessy, S., Andrade-Rodriguez, A., & Evett, S. (2020). A Variable-Rate Irrigation Decision Support System for Corn in the U.S. Eastern Coastal Plain. Transactions of the ASABE, 63(5), 1295-1303. https://doi.org/10.13031/trans.13965
dc.relationSui, R., & Baggard, J. (2020). Development and Evaluation of a Variable-Rate Irrigation Management Method in the Mississippi Delta. https://doi.org/10.13031/trans.14019
dc.relationSui, R., & Vories, E. D. (2020). Comparison of Sensor-Based and Weather-Based Irrigation Scheduling. https://doi.org/10.13031/aea.13678
dc.relationTabares, D. C., & Ruiz, J. S. H. (2016). PROTOTIPO DE SISTEMA DE CONTROL DE RIEGO PARA UN CULTIVO DE SOYA CON SUPERVISIÓN REMOTA DE HUMEDAD. 141.
dc.relationTemporal and spatial variability of soil moisture based on WSN - ScienceDirect. (s. f.). Recuperado 27 de octubre de 2021, de https://www-sciencedirect-com.bdigital.sena.edu.co/science/article/pii/S0895717712003639
dc.relationTheesfeld, I. (2016). A Continuum of Governance Regimes: A New Perspective on Co-Management in Irrigation Systems (SSRN Scholarly Paper ID 2985415). Social Science Research Network. https://papers.ssrn.com/abstract=2985415
dc.relationThompson, R., & Voogt, W. (s. f.). Mini-paper—Irrigation management using soil moisture sensors. Recuperado 27 de octubre de 2021, de https://ec.europa.eu/eip/agriculture/sites/default/files/6_mini-paper_soil_moisture_sensors_0.pdf
dc.relationTorres, R., Domingo, R., Jiménez, M., Vera, J. A., & Toledo, A. (s. f.). Manejo del riego utilizando redes de sensores inalámbricas y cableadas. Criterios de selección. 5.
dc.relationUsha Rani, M., & Kamalesh, S. (2014). Web based service to monitor automatic irrigation system for the agriculture field using sensors. 2014 International Conference on Advances in Electrical Engineering (ICAEE), 1-5. https://doi.org/10.1109/ICAEE.2014.6838569
dc.relationVarona, R. M. (2021). Viabilidad económica del riego por aspersión semiestacionario a pequeña escala utilizando energía fotovoltaica. Revista Ingeniería Agrícola, 11(4). https://www.redalyc.org/journal/5862/586268743003/
dc.relationVillegas, Y., & Sepúlveda Casadiego, Y. (2019, diciembre 9). Implementación de sensores en los sistemas de riego automatizado Implementation of sensors in automated irrigation systems. https://doi.org/10.22490/ECAPMA.3417
dc.relationWoo, G. (2017). PROPUESTA DE UN SISTEMA DE CONTROL Y AUTOMATIZACION CON ADMINISTRACION REMOTA ATRAVEZ DE UN SMARTPHONE ANDROID PARA EL RIEGO DEL CULTIVO DE LECHUGA EN LA FINCA LOS ALMENDROS DEL DEPARTAMENTO DE JINOTEGA EN EL AÑO 2017. 76. https://repositorio.unan.edu.ni/8246/1/97476.pdf
dc.relationZotarelli, L., Dukes, M. D., & Morgan, K. T. (2019). Interpretation of Soil Moisture Content to Determine Soil Field Capacity and Avoid Over-Irrigating Sandy Soils Using Soil Moisture Sensors. 4. https://edis.ifas.ufl.edu/pdf/AE/AE46000.pdf
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleAnálisis bibliométrico de la investigación sobre sistemas de gestión de riego agrícola automatizados
dc.typebachelor thesis


Este ítem pertenece a la siguiente institución