dc.contributorhttps://orcid.org/0000-0001-9814-5045
dc.contributorhttps://orcid.org/0000-0001-7216-0407
dc.contributorhttps://orcid.org/0000-0003-0307-7161
dc.contributorhttps://orcid.org/0000-0003-1299-3698
dc.contributorhttps://orcid.org/0000-0001-9945-5993
dc.contributorhttps://orcid.org/0000-0001-6241-3490
dc.contributorhttps://orcid.org/0000-0002-4427-6872
dc.contributorhttps://orcid.org/0000-0003-0675-5933
dc.contributorhttps://orcid.org/0000-0003-1521-9411
dc.contributorhttps://orcid.org/0000-0002-9674-6055
dc.contributorhttps://orcid.org/0000-0002-0979-4113
dc.contributorhttps://orcid.org/0000-0001-6180-9418
dc.contributorhttps://orcid.org/0000-0002-6096-1706
dc.contributorhttps://orcid.org/0000-0002-3575-967X
dc.contributorhttps://orcid.org/0000-0002-9573-8344
dc.contributorhttps://orcid.org/0000-0002-9153-1741
dc.contributorhttps://orcid.org/0000-0001-8368-5057
dc.contributorhttps://orcid.org/0000-0003-2002-1880
dc.contributorhttps://orcid.org/0000-0001-9913-6618
dc.contributorhttps://orcid.org/0000-0002-6855-5243
dc.contributorhttps://orcid.org/0000-0001-5613-2262
dc.contributorhttps://orcid.org/0000-0003-1725-0463
dc.contributorhttps://orcid.org/0000-0003-2972-8946
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=Vxf_-uoAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=5qVEb4MAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=NYc-byYAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=7sxdrqoAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=MGPd7sYAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=_xNMzfkAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=aW_2awIAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=eZD2ixEAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=0KtX7WIAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=4swtQGsAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=C0cr1DAAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=yU25PvQAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=i-_R070AAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=zyG3ORIAAAAJ
dc.contributorhttps://scholar.google.com.co/citations?hl=es&user=9m7r47oAAAAJ
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000756423
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000939234
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000787850
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001417439
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000798177
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001268198
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001235877
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000874850
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001583937
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001388444
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001631148
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001645851
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000118511
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000535834
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001202367
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000118503
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000118502
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000118500
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001735621
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000103436
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001358620
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622958
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000007843
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004332
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000003012
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000015524
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000012089
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000009175
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000007613
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008218
dc.contributorUniversidad Santo Tomás
dc.creatorOcazionez Jiménez, Isabel Cristina Patricia
dc.creatorSandoval Rincón, Mónica Viviana
dc.creatorQuintero Dallos, Viviana
dc.creatorValderrama Ríos, Claudia Marcela
dc.creatorGonzález González, Nancy Consuelo
dc.creatorRozo Correa, Ciro Eduardo
dc.creatorCervantes Díaz, Martha
dc.creatorAlvarado Rueda, Lizeth Johanna
dc.creatorBayona Ayala, Olga Lucía
dc.creatorCandela Soto, Angélica María
dc.creatorAcevedo Argüello, César Augusto
dc.creatorContreras Gómez, Alix Estela Yusara
dc.creatorMonroy Becerra, Joam Eduardo
dc.creatorRamírez Corredor, Lina Valeria
dc.creatorCuéllar Rodríguez, Luz Ángela
dc.creatorHerrera Sandoval, Laura Viviana
dc.creatorDuarte Velandia, Laura Valentina
dc.creatorCéspedes Navarro, Mabel Gricelda
dc.creatorParra Sepúlveda, Silvia Fernanda
dc.creatorGonzález Herreño, Liz Anyela
dc.creatorFerreira Beltrán, Deyanira
dc.creatorPlata Chávez, Vladimir
dc.creatorMaradei García, María Paola
dc.date.accessioned2021-08-04T17:29:42Z
dc.date.accessioned2022-09-28T13:35:44Z
dc.date.available2021-08-04T17:29:42Z
dc.date.available2022-09-28T13:35:44Z
dc.date.created2021-08-04T17:29:42Z
dc.date.issued2020-12-17
dc.identifierOcazionez Jiménez, I. C. P., Sandoval Rincón, M. V., Quintero Dallos, V., Valderrama Ríos, C. M., González González, N. C., Rozo Correa, C. E., et ál. (2020). Gestión de residuos y biomasa: avances en la economía circular. Bucaramanga: Universidad Santo Tomás
dc.identifier9789588477855
dc.identifierhttp://hdl.handle.net/11634/35230
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3641415
dc.description.abstractThe economy moves actively thanks to the purchasing power of the market for the different goods and services that can be offered to potential customers; that is, a focused group of people whose object is to meet their needs. In a process in which the exploitation of natural resources is carried out, giving way to the manufacture of tangible products, which to reach the consumer require a series of commercial stages and the product completes its cycle from being considered a good to a waste . This process results in a linear movement of manufacture-production and consumption of the good in question, this is known as linear economy. The industry has increased its interest in the appropriation and materialization of the concept of clean production, a concept that is related to sustainable development and eco-efficiency. Clean production consists of continuous improvement, quality control, and process reengineering. For which a review of the operations of the processes that are part of a productive activity or services is required, with a view to finding the various possibilities for improvement or optimization in the use of resources. The circular economy creates a new vision of the industry, because it aims to integrate economy, society and the environment as a sustainable concept, its main objective is to give added value to discarded products, seeking to minimize the generation of waste , in such a way that its life cycle is closed.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherProducción Editorial
dc.relationContribuciones de Investigación 7
dc.relationAlberto, J., Herrán, F., Raudel, R., Torres, S., Enrique, G., Martínez, R., Ximhai, R. (2008). Importancia de los abonos orgánicos, 4, 57-67. Universidad Autónoma Indígena de México. http://www.uaim.edu.mx/webraximhai/Ej-10articulosPDF/Art[1]%204%20Abonos.pdf
dc.relationAstaíza, J. M. et al. (2014). Diagnóstico de los principales antibióticos recomendados para pollo de engorde (broiler) por los centros agropecuarios del municipio de Pasto, Nariño, Colombia. Revista Médica Veterinaria, pp. 99-110.
dc.relationBeatriz, J. L, et al. (2018). Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Science of the total Environment, 2018, 1-9. https:// doi.org/10.1016/j.scitotenv.2018.06.314.
dc.relationBloem, E. A. et al. (2017). Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer a review. Science of The Total Environment, 607, 225-242. https:// doi.org/10.1016/j.scitotenv.2017.06.274
dc.relationBuol, S. W., Hole, F. D. y McCracken, R. J. (1973). Soil Genesis and Classification (1a. ed.). Ames, IA: Iowa State University Press. ISBN 978-0-8138-1460-5.
dc.relationCalidad Microbiológica. (2016). Análisis microbiológico. Coliformes fecales. http://www.calidadmicrobiologica.com.co/index.php?option=com_content&view=article&id=24&Itemid=246
dc.relationCarvalho, I. S. et al. (2016). Antibiotics in the aquatic environments: a review of the European scenario. Enviroment International, 94, 736-757. https://doi. org/10.1016/j.envint.
dc.relationCastelló, J. A. (2000). La gallinaza. En Selecciones Avícolas, pp. 5-35.
dc.relationCorporación Autónoma Regional de Santander - CAS. (2006). Caracterización y diagnóstico del páramo de Almorzadero. CAS.
dc.relationChaoqi, P. R. et al. (2018). Effect of composting and soil type on dissipation of veterinary antibiotics in land-applied manures. Chemosphere 196, 270-279.
dc.relationDANE. (2014). Estadísticas agropecuarias. Encuesta Nacional Agropecuaria. https:// www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2014/ presentacion_ena_2014
dc.relationDelgado, M. J. et al. (2010). Phytotoxicity of uncomposted and composted poultry manure. AJP African Journal of Plant Science, pp. 154-162.
dc.relationDelgado, A.M., Mrialles, H.R., Peralla, F.A. y Almestre, R.C. (2014). Heavy metal concentration in soil, plant, earth worm and leachate from poultry manure applied to agricultural land in Spain. Rev int. contam-Ambio, 30(1), 45-50.
dc.relationDelgado, M. (2014). Heavy metals concentration in soil, plant, earth worm and leachate from poultry manure applied to agricultural land. Instituto nacional de investigación y tecnología agraria y alimentaria. Madrid, España.
dc.relationDelgado, M., Miralles, R., Alonso, F., Rodríguez, C. y Martín, J. (2014). Heavy metals concentration in soil, plant, earthworm and leachate from poultry manure applied to agricultural land. Universidad Autónoma de Méjico. Revista Internacional de Contaminación Ambiental, 30(1), 43-50.
dc.relationDuque, C.O. (2014). Industria avícola: impacto ambiental y aprovechamiento de los residuos. Corpoica y CEISA.
dc.relationEfsa, H. et al. (2016). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in (pp. 1-207).
dc.relationEstrada, M. M. (2005). Manejo y procesamiento de la gallinaza. Revista La Sallista de Investigación, 2(1), 43-48. https://www.redalyc.org/pdf/695/69520108.pdf
dc.relationFAO. (2008). Gestión de residuos de aves de corral en los países en desarrollo. http://www. fao.org/3/al716s/al716s00.pdf
dc.relationFENAVI- FONAV. (2000). Producción de compost en la industria avícola. Cuadernos Avícolas 11. Grupo interdisciplinario de estudios moleculares GIEM. Facultad de Ciencias Exactas y Naturales Universidad de Antioquia.
dc.relationFuente, B., et al. (2012). Respuesta productiva de gallinas a dietas con diferentes niveles de proteína. Archivos de medicina veterinaria, 44(1), 67-74. https://dx.doi. org/10.4067/S0301-732X2012000100010.
dc.relationGómez, T., González, M., & Chiroles, S. (2004). Microorganismos presentes en el compost. Importancia de su control sanitario. Medio Ambiente y Desarrollo; Revista electrónica de la Agencia de Medio Ambiente.
dc.relationICONTEC. (2011). NTC 5167. https://ecollection-icontec-org.crai-ustadigital. usantotomas.edu.co/normavw.aspx?ID=4372
dc.relationInstituto de Investigación de Recursos Biológicos Alexander Von Humboldt. (2017). Atlas de Páramos de Colombia.
dc.relationIntagri. (2017). La gallinaza como fertilizante. Ciencia e Investigación Agraria, 1 (Nutrición Vegetal), 3. https://www.intagri.com/articulos/nutricion-vegetal/gallinaza-como-fertilizante
dc.relationOcazionez, I. (2014). Disminución del tiempo de compostaje de residuos de poda de árboles para la elaboracion de abonos empleados en pastizales. Informe Final de Investigación. Universidad Santo Tomás, Facultad de Química Ambiental, Bucaramanga.
dc.relationJaramillo, C. (2016). Mineralización de la gallinaza y de los restos de cosecha en el suelo. Aplicación al cultivo de la coliflor en la Huerta de Valencia. Universidad Politécnica de Valencia. Departamento de Producción Vegetal.
dc.relationJian Qiang Su, J. et al. (2014). Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environment International, 65, 9-15.
dc.relationKumar, K. et al. (2005). Antibiotic Use in Agriculture and Its Impact on the Terrestrial Environment. Advances in Agronomy, 87, 1-54.
dc.relationLaich, F. (2011). El papel de los microorganismos en el proceso del compostaje. Instituto Canario de Investigaciones Agrarias. https://www.icia.es/biomusa/en/ jornadas-y-actividades/jornada-tecnica-sobre-calidad-y-fertilidad/65-el-papel-de-los-microorganismos-en-el-proceso-de-compostaje/file
dc.relationMarín, A., Albarrán, J. G., Fuenmayor, F., & Perdomo, D. (2009). Evaluation of the growing regulator effect on the in vitro regeneration of five cassava cultivars (Manihot esculenta Crantz). Revista Científica UDO Agrícola, 9(3), 556-562. http://www.bioline.org.br/request?cg09110
dc.relationMontenegro, S., Posada, S. y Barrera, S. (2017). Efecto de la gallinaza sobre Azotobacter sp., Azospirillum sp. y hongos micorrízicos arbusculares en un cultivo de cebolla (Allium fistulosum). Entramado, 13(2), 250-257.
dc.relationNadali, A., et al. (2018). Attenuation of tetracyclines during chicken manure and bagasse cocomposting: Degradation, kinetics, and artificial neural network modeling. Journal of Environmental Management, 1203-1210. https://doi. org/10.1016/j.jenvman.2018.11.003.
dc.relationOrjuela, C. Y. (2014). Propuesta del Plan de Manejo Ambiental para la Avícola Acapulco ubicada en el municipio San Antonio del Tequendama, departamento de Cundinamarca, Colombia (pp. 1-19). Universidad Militar Nueva Granada.
dc.relationPareja, M. M. (2005). Manejo y procesamiento de la gallinaza. Revista Lasallista de Investigación, 2(1). https://web-b-ebscohost-com.bibliotecavirtual.unad. edu.co/ehost/detail/detail?vid=8&sid=49cec3e1-bda2-4a3d-b7d4-102aa3fecd39%40pdc-v
dc.relationReyes, Y.C., Vergara, I., Torres, O.E., Díaz, M., y González, E.E. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería Investigación y Desarrollo, 16(2), 66-77. http:// www.monomeros.com/descargas/dpmanualfertilizacion.pdf
dc.relationSolla. (2017). Manual de manejo ponedoras para huevo comercial (pp. 1-13). Solla S.A.
dc.relationSuvendu D, et al. (2017). Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy. Front. Microbiol. (pp. 1702-1710).
dc.relationToro, F. (2018). Ficha técnica sanitizado. Sistema integral de gestión avial. Nutrición vegetal. https://s3.amazonaws.com/croper/products/data_sheet_fs/000/005/667/ original/Ficha_Técnica_Sanitizado.pdf ?1556641968
dc.relationUniversidad de Extremadura. (2006). Edafología, ciencias ambientales. Facultad de Ciencias. http://www.eweb.unex.es/eweb/edafo/ECAP/ECAL6MHongos. htm
dc.relationYalcin, H., y Kavuncuoglu, H. (2014). Physical, Chemical and Bioactive Properties of Onion (Allium Cepa L.) Seed and Seed Oil. Journal of Applied Botany and Food Quality 87, 87-92.
dc.relationYate, D. M. F., y Segura, A. V. Y. (2017). Alternativas de aprovechamiento para los excrementos de las granjas avícolas ubicadas en el municipio de Fómeque Cundinamarca. Documentos de Trabajo ECAPMA, (2). https://hemeroteca. unad.edu.co/index.php/workpaper/article/view/1815/2022
dc.relationAyala, G. (2016). Análisis de crecimiento y producción de 3 variedades de Sacha Inchi (Pluketenia Volubilis L.), en el municipio de Tena Cundinamarca. Universidad de Ciencias Ambientales y Aplicadas.
dc.relationBueno-Borges, L. B., Sartim, M. A., Gil, C. C., Sampaio, S. V., Rodrigues, P. H. V., y Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: effects of roasting on antinutrients, antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(10), 4159–4166. https://doi.org/10.1007/s13197-018-3345-1
dc.relationCavalcanti, E. J. C., Carvalho, M., y Jonathan, J. L. (2019). Exergoenvironmental results of a eucalyptus biomass-fired power plant. Energy, 189. https:// doi.org/10.1016/j.energy.2019.116188
dc.relationChirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., y Campos, D. (2013). Sacha Inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 141(3), 1732-1739. https://doi.org/10.1016/j.foodchem.2013.04.078
dc.relationComtrade. (2018). Base de datos de la Organización de las Naciones Unidas. https://comtrade.un.org
dc.relationDincer, I., y Ronsen, M. A. (2013). Exergy and energy analyses. In EXERGY: Energy, Environment and Sustainable Development (2nd ed., p. 24).
dc.relationDincer, I., Rosen, M. A., y Al-Zareer, M. (2018). Análisis exergoambiental. Comprensión de Sistemas de energía 1(5), 377-421). Elsevier Ltd. https://doi.org/ doi:10.1016/B978-0-12-809597-3.00108-5
dc.relationFanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dachà, M., … Mondello, L. (2011). Caracterización química del aceite Sacha Inchi (Plukenetia volubilis L.). Journal of Agricultural and Food Chemistry, 59(24), 13043-13049. https://doi.org/10.1021/jf203184y
dc.relationGarcía, J., Marmolejo, D., Cárdenas, J., y Morales, R. (2018). Exergy Analysis of an Extractive Distillation Column for Reducing Energy Consumption in a Bioethanol Production Process. Computer Aided Chemical Engineering 43, 513- 518. Elsevier B.V. https://doi.org/10.1016/B978-0-444-64235-6.50091-7
dc.relationGómez, D., y Montaña, E. (2019). Caracterización en el eslabón de comercialización en la cadena de valor del cultivo de Sacha Inchi (Plukenetia volubilis) en el departamento del Meta. Universidad Santo Tomás. https://repository.usta.edu.co/bitstream/ handle/11634/18025/2019darkisgomez?sequence=6&isAllowed=y
dc.relationISO 14040. (2006). Environmental Management-Life Cycle Assessment-Principles and Framework. International Organization for Standardization. Ginebra, Suiza.
dc.relationJolliet, O., Saade-Sbeih, M., Shaked, S., Jolliet, A., y Crettaz, P. (2016). Environmental Life Cycle Assessment. https://library.oapen.org/handle/20.500.12657/43927
dc.relationKodahl, N. (2020). Sacha Inchi (Plukenetia volubilis L.) from lost crop of the Incas to part of the solution to global challenges? Planta, 251(4), 1-22. https://doi. org/10.1007/s00425-020-03377-3
dc.relationLakkhana, C., Atong, D., y Sricharoenchaikul, V. (2017). Fuel Gas Generation from Gasification of Sacha Inchi Shell using a Drop Tube Reactor. Energy Procedia 138, 870-876. Elsevier Ltd. https://doi.org/10.1016/j. egypro.2017.10.109
dc.relationMeyer, L., Tsatsaronis, G., Buchgeister, J., y Schebek, L. (2009). Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy, 34(1), 75-89. https://doi.org/10.1016/j.energy.2008.07.018
dc.relationMorozyuk, T., Tsatsaronis, G., y Koroneos, C. (2016). Environmental impact reduction using exergy-based methods. Journal of Cleaner Production, 118, 118- 123. https://doi.org/10.1016/j.jclepro.2016.01.064
dc.relationÖzilgen, M., y Sorgüven, E. (2011). Utilización de energía y exergía, y emisión de dióxido de carbono en la producción de aceite vegetal, Energy 36(10), 5954-5967. https://doi.org/10.1016/j.energy.2011.08.020
dc.relationQuintero, V. (2018). Modelamiento, integración y evaluación exergética de la producción conjunta de bioetanol de primera, segunda y tercera generación, a partir de caña de azúcar y biomasa. Universidad Industrial de Santander. https://doi.org/https:// orcid.org/0000-0003-0307-7161
dc.relationRevista Dinero. (2019). La planta que le quita terreno a la coca en Colombia. https://www.dinero.com
dc.relationRodríguez, L. (2020). Aislamiento de la proteína a partir del residuo sólido de la sacha inchi (Plukenetia volubilis linneo). Universidad Santo Tomás Seccional Bucaramanga.
dc.relationSacha Colombia. (2018). Biorefinería S.A. http://sachacolombia.com
dc.relationSalehi, N., Mahmoudi, M., Bazargan, A., y McKay, G. (2018). Exergy and Life Cycle-Based Analysis. Handbook of Environmental Materials Management, 1-22. https://doi.org/10.1007/978-3-319-58538-3_84-2
dc.relationYürüsoy, M., y Keçebaş, A. (2017). Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy. Applied Thermal Engineering, 113, 449-459. https://doi.org/10.1016/j.applthermaleng.2016.11.054
dc.relationAjayi, O. A., y Adefila, S. S. (2012). Methanol Production from Cow Dung 2(7), 9-17.
dc.relationAlonso-Gómez, L., y Bello‐Pérez, L. A. (2018). Materias primas usadas para la producción de etanol de cuatro generaciones: retos y oportunidades. Agrociencia, 52(7), 967-990.
dc.relationChandra, R., Takeuchi, H., y Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462-1476. https://doi.org/10.1016/j.rser.2011.11.035
dc.relationChundawat, S. P. S., Beckham, G. T., Himmel, M. E., y Dale, B. E. (2011). Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annual Review of Chemical and Biomolecular Engineering, 2(1), 121-145. https://doi. org/10.1146/annurev-chembioeng-061010-114205
dc.relationHaibo, H., Long, S., y Singh, V. (2016). Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane. Biofuels, Bioproducts and Biorefining, 10(3), 299-315. https://doi.org/10.1002/bbb.1640
dc.relationHuron, M., Hudebine, D., Ferreira, N. L., y Lachenal, D. (2016). Impact of delignification on the morphology and the reactivity of steam exploded wheat straw. Industrial Crops and Products, 79, 104-109. https://doi.org/10.1016/j. indcrop.2015.10.040
dc.relationKumari, D., y Singh, R. (2018, julio). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90, 877-891. https://doi.org/10.1016/j.rser.2018.03.111
dc.relationMontingelli, M. E., Benyounis, K. Y., Stokes, J., y Olabi, A. G. (2016). Pretreatment of macroalgal biomass for biogas production. Energy Conversion and Management, 108, 202-209. https://doi.org/10.1016/j.enconman.2015.11.008
dc.relationMood, H.S., Hossein, A., Tabatabaei, M., Salehi, G., Najafi, G. H., Gholami, M., y Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77-93. https://doi.org/10.1016/j.rser.2013.06.033
dc.relationMurray, J., y King, D. (2012). Climate policy: Oil’s tipping point has passed. Nature, 481(7382), 433-435. https://doi.org/10.1038/481433a
dc.relationOsman, A. I., Abdelkader, A., Farrell, C., Rooney, D., y Morgan, K. (2019, January). Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches. Fuel Processing Technology, 192, 179-202. https://doi.org/10.1016/j.fuproc.2019.04.026
dc.relationPlaza, J., Daza, C., Coral, E., García, A., y Villafuerte, R. (2015). Design, Construction and Implementation of a Low Cost Solar-Wind Hybrid Energy System. IEEE Latin America Transactions, 13(10), 3304-3309. https://doi. org/10.1109/TLA.2015.7387235
dc.relationPrasad, S., y Ingle, A. P. (2019). Impacts of sustainable biofuels production from biomass. Sustainable Bioenergy. Elsevier Inc. https://doi.org/10.1016/ B978-0-12-817654-2.00012-5
dc.relationSuárez-Forero, S. J., Candela-Soto, A. M., Henao-Martínez, J. A., y Bayona-Ayala, O. L. (2019). Evaluación del desempeño del pretratamiento con peróxido de hidrógeno sobre bagazo de caña de azúcar para remoción de lignina. Iteckne, 16(1), 21-28. http://dx.doi.org/10.15332/iteckne.v16i1.2158
dc.relationSubhedar, P. B., y Gogate, P. R. (2013). Intensi fi cation of Enzymatic Hydrolysis of Lignocellulose Using Ultrasound for E ffi cient Bioethanol Production: A Review. Industrial and Engineering Chemistry Research, 52(34), 11816-11828. https://doi.org/https://doi.org/10.1021/ie401286z
dc.relationSun, Y., y Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review q. Bioresource Technology, 83(1), 1-11.
dc.relationWang, B., Gebreslassie, B. H., y You, F. (2013). Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: Integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization. Computers and Chemical Engineering, 52, 55-76. https://doi. org/10.1016/j.compchemeng.2012.12.008
dc.relationZhang, Q., He, J., Tian, M., Mao, Z., Tang, L., Zhang, J., y Zhang, H. (2011). Bioresource Technology Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresource Technology, 102(19), 8899-8906. https://doi.org/10.1016/j. biortech.2011.06.061
dc.relationZhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O., Person, V. N., Division, C. S., Ridge, O., y Ridge, O. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology,139, 47-54. https://doi.org/10.1016/j.jbiotec.2008.08.009
dc.relationZhao, X., Cheng, K., y Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82, 815-827. https://doi.org/10.1007/s00253-009-1883-1
dc.relationZiling, S., Gaige, Y., Yan, G., y Tong, Z. (2012). Comparison of two chemical pretreatments of rice, 7(3), 3223-3236.
dc.relationColombia. (10 de julio de 2014). Sistema Único de Información Normativa. Diario Oficial. AÑO CL. N. 49208. 10, p. 18. http://www.suin-juriscol.gov. co/viewDocument.asp?id=1259502
dc.relationInstituto Colombiano de Normas Técnicas y Certificación - ICONTEC. (2011). Productos para la industria agrícola. productos orgánicos usados como abonos, fertilizantes y enmiendas o acondicionadores de suelo. (Segunda actualización ed.). ICONTEC. https://www.cali.gov.co/dagma/loader.php?lServicio=Tools2&lTipo=descargas&lFuncion=descargar&idFile=31838#:~:text=El%20Instituto%20 Colombiano%20de%20Normas%20T%C3%A9cnicas%20y%20Certificaci%C3%B3n%2C%20ICONTEC%2C%20es,productor%20y%20protecci%C3%B3n%20al%
dc.relationInstituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. (5 de julio de 2020). Agua/Evaluación del Recurso Hídrico. http://www.ideam. gov.co/documents/24277/76321271/Cartilla+ENA+2018+WEB+actualizada.pdf/ba353c39-b15d-4a76-8ed4-3814c4c35239
dc.relationLozada, P., Escobar, J., Vidal, A., Nates, P., Sánchez, G., Sánchez, M., y Bermúdez, A. (2005). Influencia del material de enmienda en el compostaje de lodos de plantas de tratamiento de aguas residuales. Ingeniería e Investigación, 25, 54-61.
dc.relationMinisterio de Vivienda Ciudad y Territorio. (2014). Decreto 1287 del 10 de julio de 2014. http://wsp.presidencia.gov.co/Normativa/Decretos/2014/Documents/JULIO/10/DECRETO%201287%20DEL%2010%20DE%20 JULIO%20DE%202014.pdf
dc.relationMoran, M. (5 de julio de 2020). Naciones Unidas. https://www.un.org/sustainabledevelopment/es/water-and-sanitation/
dc.relationMoreno, A., Hernández, J. L., Álvarez, V. P., Ogaz, A., y Aguilar, E. M. (2010). Libro Científico Anual Agricultura, Ganadería y Ciencia Forestal UAAAN-2009. Coahuila, México: Universidad Autónoma Agraria Antonio Narro. https:// www.researchgate.net/publication/293531008_Modificacion_de_las_Propiedades_Quimicas_de_Lodos_Residuales_de_Met-Mex_Penoles_con_ Lombrices_Eisenia_fetida
dc.relationProcuraduría General de la Nación. (30 de enero de 2003). Informe de seguimiento gestión de residuos sólidos en Colombia. https://www.paho.org/col/index. php?option=com_docman&view=download&category_slug=publicaciones-ops-oms-colombia&alias=1380-inf-seguimiento-gestion-recursos-solidos&Itemid=688
dc.relationRomán, P., Martínez, M., y Pantoja, A. (1 de marzo de 2013). Manual de compostaje del agricultor. Experiencias en América Latina. Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO. http://www.fao. org/3/a-i3388s.pdf
dc.relationSuperintendencia de Servicios Públicos Domiciliarios. (7 de febrero de 2018). https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/ Publicaciones/2019/Ene/informe_sectorial-cuatrienio_2014-2017_.pdf
dc.relationU.S. Environmental Protection Agency - US EPA. (September de 1999). Biosolids Generation, Use, and Disposal. https://www.epa.gov/sites/production/ files/2018-12/documents/biosolids-generation-use-disposal-us.pdf
dc.relationVanguardia Liberal. (19 de mayo de 2020). Cerca de $15 mil millones costarían estudios y diseños para la Ptar de Bucaramanga. https://www.vanguardia. com/area-metropolitana/bucaramanga/cerca-de-15-mil-millones-costarian-estudios-y-disenos-para-la-ptar-de-bucaramanga-AH2382031
dc.relationArdila, C.M., y Bedoya-García, J. (2020). Antimicrobial resistance of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in periodontitis patients. J Glob Antimicrob Resist, 22, 215-218. doi:10.1016/j.jgar.2020.02.024
dc.relationBakht, H. F. (2015). Recent trends and methods in antimicrobial drug discovery from plant sources. Austin Journal of Microbiology, 1(1), 12.
dc.relationCaton, G., Armitage, G., Berglundh, T., Chapple, I., Jepsen, S., Kornman, K., . . . Tonetti, M. (2018). A new classification scheme for periodontal and peri‐implant diseases, conditions-Introduction, and key changes from the 1999 classification. J Clin Periodontol, 45(20), S1-S8.
dc.relationCéspedes, M. (2020). Perfil químico y biológico de los aceites esenciales de Cymbopogon Nardus y Cymbopogon Martinii. Trabajo de Grado, Universidad Santo Tomás Seccional Bucaramanga, Facultad de Química Ambiental.
dc.relationDe Oliveira JR. et al. (2013). Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry. BMC Complement Altern Med, 13, p. 208.
dc.relationD’Souza, A. B. (2013). The Pomegranate: Effects on Bacteria and Viruses That Influence Human Health. Evid Based Complement Alternat Med, 2013, 606212.
dc.relationDuarte, L. (2020). Determinación de la actividad antibacteriana y fitotoxicidad de los aceites esenciales de anís (Pimpinella Anisum) y romero (Rosmarinus Officinalis). Trabajo de grado, Universidad Santo Tomás Seccional Bucaramanga, Facultad de Química Ambiental.
dc.relationFani M., y Kohanteb, J. (2012). Inhibitory activity of Aloe vera gel on some clinically isolated cariogenic and periodontopathic. J Oral Sci., 54(1),15-21.
dc.relationFani, M., y Kohanteb, J. (2017). In Vitro Antimicrobial Activity of Thymus vulgaris Essential Oil Against Major Oral Pathogens. Journal of Evidence-Based Complementary & Alternative Medicine, 22(4), 660-666. doi: 10.1177/2156587217700772
dc.relationFortich, N. (2018). Tendencias actuales de Caries Dental en Colombia y su comportamiento Epidemiológico. Cienc Sal Virt, 1-3. doi:https://doi. org/10.22519/21455333.1131
dc.relationGoldsmith, C., Hara, Y., Sato, T. et, al. (2015). Comparison of antibiotic susceptibility in viridans group streptococci in low and high antibiotic-prescribing General Practices. J. Clin. Pharm. Ther, 40, 204-207.
dc.relationGómez, A., y López, A. (2009). Potencial antimicrobiano de los aceites esenciales de orégano (Origanum vulgare) y canela (Cinnamomum zeylanicum). Temas Selectos de Ingeniería de Alimentos, 3(1), 33-45.
dc.relationHaffajee, S. S. (2002 ). Dental biofilms: difficult therapeutic targets. Periodontology, 28(1), 12- 55.
dc.relationHajishengallis, G. (2015). Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol, 15(1), 30-44.
dc.relationHotwani, K., Baliga, S., y Sharma, K. (2014). Phytodentistry: use of medicinal plants. J. Complement Integr Med., 11(4), 233-251.
dc.relationIsmail, A., Sohn, W., Tellez, M., Willem, J., Betz, J., y Lepkowski, J. (2008). Risk indicators for dental caries using the International Caries Detection and Assessment System (ICDAS). Commun Dent Oral Epidemiol, 36(1), 55-68.
dc.relationJia, L., Han, N., Du, J., Guo, L., Luo, Z., y Liu, Y. (2019). Pathogenesis of Important Virulence Factors of Porphyromonas gingivalis via Toll-Like Receptors. Front Cell Infect Microbiol, 9, 262. doi:10.3389/fcimb.2019.00262
dc.relationFranca, J.R., y De Luca, M.P. (2014). Propolis-based chitosan varnish: drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria. BMC Complementary and Alternat, 14-478.
dc.relationKarygianni, L., Al-Ahmad, A., Argyropoulou, A., Hellwig, E., Anderson, A.C., y Skaltsounis, A.L. (2015). Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front. Microbio, 6,1529.
dc.relationKarygianni, L., Cecere, M. et, al. (2014). High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms. BioMed Research International, Article ID 839019, 8 pages.
dc.relationLemos, J., Palmer, S., Zeng, L., et, al. (2019). The Biology of Streptococcus mutans. Microbiol Spectr, 7(1). doi:10.1128/microbiolspec.GPP3-0051-2018
dc.relationLópez, R. M., Ruiz, L., y Delgadillo, J. (2016). Anti-microbial activity of thyme essential oil (Thymus vulgaris L.). Agroproductividad, 9(11), 78-82.
dc.relationMaguna, F., Romero, A., Garro, O., y Okulik, N. (2006). Actividad antimicrobiana de un grupo de Terpenoides. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962012000200005
dc.relationMiller AB, C. R. (2015). The antibacterial and antifungal activity of essential oils extracted from Guatemalan medicinal plants. Pharm Biol., 53(4), 548-54.
dc.relationMinisterio de Salud y Protección Social. (2015). Estudio Nacional de Salud Bucal IV, 2013-2014.
dc.relationMoromi, H. (2004). Bacterias orales y enfermedades sistémicas: Una revisión. Odontol. sanmarquina, 8(1), 30-34.
dc.relationOberoi, S., Dhingra, C., Sharma, G., y Sardana, D. (2015). Antibiotics in dental practice: how. Int. Dent. J, 4-10.
dc.relationOcheng, F., Bwanga, F., Joloba, M., Softrata, A., Azeem, M., Putsep, K., … Gustatsson, A. (2015). Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens. Evidence-based complementary adn alternative medicine. doi:https://doi.org/10.1155/2015/230832
dc.relationOliveira SA, Z. J. (2014). The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. Braz Oral Res., 28, 22-7.
dc.relationOrganización Mundial de la Salud. (2018). Nota descriptiva: Resistencia a los Antimicrobianos. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antimicrobianos
dc.relationPandey, A., y Shashank, K. (2013). Perspective on plant products as antimicrobials agent: Review. Pharmacologia, 469-480.
dc.relationPapapanou, P., Sanz, M., Buduneli, N., Dietrich, T., Feres, M., Fine, D., … Tonetti, M. (2018). Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. J Periodontal, 89(1), S173 - S182.
dc.relationParra, S. (2020). Estudio de la composición química y actividad biológica de aceites esenciales de cardamomo (Elettaria Cardamomum) y tomillo (thymus vulgaris). Trabajo de grado, Universidad Santo Tomás Seccional Bucaramanga, Facultad de Química Ambiental.
dc.relationPeña, M., Calzado, M., González, M., Cordero, S., y Azahares, H. (2012). Periodontal pathogens and their relationships with systemic diseases. Medisan, 16(7), 1047 -1058.
dc.relationPereira JV, B. D.-S. (2005). Antimicrobial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infections. Braz Dent J, 16(3),192-6.
dc.relationPerricone, M., Arace, E., Corbo, M., Sinigaglia, M., y Bevilacqua, A. (2015). Bioactivity of essential oils: a review on their interaction with food components. Frontiers in Microbiology, 6, 7.
dc.relationPetersen, P., y Ogawa, H. (2012). The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000, 60(1), 15-39.
dc.relationPitts, N., Zero, D., Marsh, P. et, al. (2017). Dental caries. Nat. Rev. Dis Primers, 17030. doi:doi:10.1038/nrdp.2017.30
dc.relationPlonka KA, P. M. (2013). Randomized controlled trial: a randomized controlled clinical trial comparing a remineralizing paste with an antibacterial gel to prevent early childhood caries. Pediatr Dent, 35:8-1.
dc.relationPretzl, B., Salzer, S., Ehmke, B. et, al. (2019). Administration of systemic antibiotics during non-surgical periodontal therapy—a consensus report. Clin. Oral Invest, 3073-3085. doi:https://doi.org/10.1007/s00784-018-2727-0
dc.relationQuintero, A., y Rangel, K. (2016). Determinación de la actividad antimicrobiana de aceites esenciales frente a Enterococcus faecalis, Staphylococcus aureus y Candida albicans. Trabajo de grado, Universidad Santo Tomás Seccional Bucaramanga, Facultad de Química Ambiental, https://repository.usta.edu.co/handle/11634/9419
dc.relationRajinder, M., Abhilash, R., y Vikas, J. (2019). Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Current Drug Targets, 20, 605-624.
dc.relationSajjan, N. L. (2013). Comparative evaluation of chlorhexidine varnish and fluoride varnish on plaque Streptococcus mutans count-an in vivo study. Int J Dent Hyg, 11, 191-197.
dc.relationSánchez, L., y Sáenz, E. (2005). Antisépticos y desinfectantes. Dermatología Peruana, 15(2), 82-103.
dc.relationSharmeen, B., Suroowan, S., Kannan, R., y Fawzi, M. (2020). Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends in Food Science & Technology, 89-105. doi:https://doi.org/10.1016/j. tifs.2020.04.025
dc.relationSüntar I, O. O. (2016). Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharm Biol., 54(6),1065-70.
dc.relationSuzuk, S., Kaskatepe, B., y Cetin, M. (2016). Antimicrobial susceptibility against penicillin, ampicillin and vancomycin of viridans group Streptococcus in oral microbiota of patients at risk of infective endocarditis. Le infezioni in medicina, 24(3), 190-193.
dc.relationTariq, S., Wani, S., Rasool, W., Shafi, K., AhmadBhat, M., Prabhakar, A., … Rather, M. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134. doi:https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j. micpath.2019.103580
dc.relationTeng, F., Yang, F., Huang, S., Bo, C., Xu, Z., Amir, A., Xu, J. (2015). Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Hosto Microbe, 18(3), 296-306.
dc.relationTorres, K., y Torres, M. (2018). Obtención, caracterización y evaluación de la actividad antibacmicrobiana de aceites esenciales de diversa familias frente a enterobacterias y candida albincas. Trabajo de grado, Universidad Santo Tomás Seccional Bucaramanga, Facultad de Química Ambiental. https://repository.usta. edu.co/handle/11634/16824
dc.relationWorld Health Organization. (2014, abril). Antimicrobial resistance: global report on surveillance 2014. Obtenido de http://www.who.int/drugresistance/ documents/surveillancereport/en/
dc.relationYamanaka A, K. T. (2007). Inhibitory effect of cranberry polyphenol on biofilm formation and cysteine proteases of Porphyromonas gingivalis. J Periodontal Res, 589-92.
dc.relationYouravong, N., Teanpaisan, R., y Chongsuvivatwong, V. (2013). Salivary lead in relation to caries,salovaru factors and cariogenic bacteria in children. Int Dent, 123-129.
dc.relationZhang, Y., Wang, X., Li, H., Ni, C., Du, Z., y Yan, F. (2018). Human oral microbiota and its modulation for oral health. Biomed Pharmacother, 883-893. https://doi.org/10.1016/j.biopha.2018.01.146
dc.relationAl-Hamamre, Z., y Yamin, J. (2014). Parametric study of the alkali catalyzed transesterification of waste frying oil for biodiesel production. Energy Conversion and Management, 79, 246-254.
dc.relationAtadashi, I.M. (2015). Purification of crude biodiesel using dry washing and membrane technologies. Alexandria Engineering Journal, 54, 1265-1272.
dc.relationCanakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98, 183-190.
dc.relationCarmona-Cabello, M., Leiva-Candia, D., Castro-Cantarero, J.L., Pinzi, S., y Dorado, M.P. (2018). Valorization of food waste from restaurants by transesterification of the lipid fraction. Fuel, 215, 492-498.
dc.relationCasallas, I.D., Carvajal, E. Mahecha, E., Castrillón, C., Gómez, H., López, C., y Malagón-Romero, D. (2018). Pre-treatment of waste cooking oils for biodiesel production. Chemical Engineering Transactions, 65.
dc.relationChe Man, Y.B., Haryati, T., Ghazali, H.M., y Asbi, B.A. (1999). Composition and thermal profile of crude palm oil and its products. Journal of the American Oil Chemists’ Society, 76, 237-242.
dc.relationChoe, E., y Min, D.B. (2007). Chemistry of deep-fat frying oils. Journal of Food Science, 72, R77-R86.
dc.relationCremonez, P.A., Feroldi, M., De Oliveira, C.J., Teleken, J.G., Meier, T.W., Dieter, J., Sampaio, S.C., y Borsatto, D. (2016). Oxidative stability of biodiesel blends derived from different fatty materials. Industrial Crops and Products, 89, 135-140.
dc.relationDogan, T.H. (2016). The testing of the effects of cooking conditions on the quality of biodiesel produced from waste cooking oils. Renewable Energy, 94, 466-473.
dc.relationFonseca, J.M., Teleken, J.G., Almeida, V.C., Da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Conversion and Management, 184, 205-218.
dc.relationFrega, N., Mozzon, M., y Lercker, G. (1999). Effects of free fatty acids on oxidative stability of vegetable oil. Journal of the American Oil Chemists’ Society, 76, 325-329.
dc.relationHajjari, M., Tabatabaei, M., Aghbashlo, M., y Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72, 445-464.
dc.relationKnothe, G., y Steidley, K. R. (2009). A comparison of used cooking oils: A very heterogeneous feedstock for biodiesel. Bioresource Technology, 100, 5796-5801.
dc.relationKulkarni, M.G., y Dalai, A.K. (2006). Waste cooking oils - An economical source for biodiesel: A review. Industrial & Engineering Chemistry Research, 45, 2901-2913.
dc.relationLam, S.S., Liew, R.K., Jusoh, A., Chong, C.T., Ani, F.N., Chase, H.A. (2016). Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable and Sustainable Energy Reviews, 53, 741-753.
dc.relationMba, O. I., Dumont, M. J., y Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry: A review. Food Bioscience, 10, 26-41.
dc.relationMendoza, L., Plata, V., Gauthier-Maradei, P. (2018). Effect of minor components on chemical composition, thermal behavior, and morphology of biodiesel precipitate. Fuel, 228, 323-331.
dc.relationMonyem, A., Canakci, M., y Van Gerpen, J. H. (2000). Investigation of biodiesel thermal stability under simulated in-use conditions. Applied Engineering in Agriculture, 16, 373-378.
dc.relationPlata, V., Rojas, O., Gauthier-Maradei, P. (2020). Improvement of palm oil biodiesel filterability by treatment with reactivated. Fuel, 260, 116198.
dc.relationSharma, Y. C., y Singh, B. (2009). Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews, 13, 1646-1651.
dc.relationVerma, P., y Sharma, M.P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063-1071.
dc.relationWyse-Mason, R.R., Beckles, D.M. (2012). An investigation of restaurant waste oil characteristics for biodiesel production in Trinidad and Tobago. Energy for Sustainable Development 16, 515-519.
dc.relationYaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., Sopian, K. (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews, 18, 184-193.
dc.relationBayona, O. L. (2012). Avaliação de pré-tratamentos para a hidrólise enzimática de palha de cana-de-açúcar considerando a produção de etanol, Vol. 7. Universidad Estadual de Campinas. http://repositorio.unicamp.br/jspui/ handle/REPOSIP/266816
dc.relationBinod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology 101(13), 4767-4774. https://doi.org/10.1016/j.biortech.2009.10.079
dc.relationD. Fernandes, S., Pereira, L., Serafim, D., y Evtuguin, a. X. (2012). Bioethanol. Bioethanol, 124-152. https://doi.org/10.5772/850
dc.relationEichler, P., Santos, F., Toledo, M., Zerbin, P., Schmitz, G., Alves, C., y Ries, L. (2015). Quim. Nova, 38(6), 828-835.
dc.relationEn, D., y Qu, C. (2015). Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos.
dc.relationFarias, F., Menezes, D., Henrique, R., Jackson, G., Rocha, D. M., y Maciel, R. (2016). Physicochemical characterization of residue from the enzymatic hydrolysis of sugarcane bagasse in a cellulosic ethanol process at pilot scale. Industrial Crops & Products, 94, 463-470. https://doi.org/10.1016/j. indcrop.2016.09.014
dc.relationRabelo, S. C. (2007). Avaliação de Desempenho de Pré-Tratamento com Peróxido de Hidrogênio Alcalino para a Hidrólise Enzimática de Bagaço de Cana-de-Açúcar. Universidade Estadual de Campinas.
dc.relationRaele, R., Boaventura, J. M. G., Fischmann, A. A., y Sarturi, G. (2014). Scenarios for the second generation ethanol in Brazil. Technological Forecasting and Social Change, 87, 205-223. https://doi.org/10.1016/j.techfore.2013.12.010
dc.relationSánchez, A. M., Gutiérrez, A. I., Muñoz, J. A., y Rivera, C. A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos Bioethanol Production from agroindustrial lignocellulosic byproducts. Tumbaga, 5, 61-91. http://revistas.ut.edu.co/index.php/tumbaga/article/ view/194/163
dc.relationSilva, N. L. C., Betancur, G. J. V., Vásquez, M. P., de Barros Gomes, E., y Pereira, N. (2011). Ethanol Production from Residual Wood Chips of Cellulose Industry: Acid Pretreatment Investigation, Hemicellulosic Hydrolysate Fermentation, and Remaining Solid Fraction Fermentation by SSF Process. Applied Biochemistry and Biotechnology, 163(7), 928-936. https://doi. org/10.1007/s12010-010-9096-8
dc.relationSun, J., Tian, K., Wang, J., Dong, Z., Liu, X., Permaul, K., Wang, Z. (2018). Improved ethanol productivity from lignocellulosic hydrolysates by Escherichia coli with regulated glucose utilization. Microbial Cell Factories, 17(1). https://doi.org/10.1186/s12934-018-0915-x
dc.relationTaherzadeh, M. J., y Karimi, K. (2007). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources. https://doi. org/10.15376/biores.2.4.707-738
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleGestión de residuos y biomasa: avances en la economia circular
dc.typeinfo:eu-repo/semantics/book


Este ítem pertenece a la siguiente institución