Analizando la evolución del modelado de enfermedades infecciosas

dc.creatorRincón Tobo, Félix Sebastián
dc.creatorBallesteros Ricaurte, Javier Antonio
dc.creatorGonzalez Amarillo, Angela Maria
dc.date.accessioned2019-11-08T21:21:34Z
dc.date.accessioned2022-09-28T12:27:07Z
dc.date.available2019-11-08T21:21:34Z
dc.date.available2022-09-28T12:27:07Z
dc.date.created2019-11-08T21:21:34Z
dc.identifierhttps://repository.unad.edu.co/handle/10596/29382
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3632034
dc.publisherUniversidad Nacional Abierta y a Distancia, UNAD
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2281/3027
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2281/2981
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/downloadSuppFile/2281/309
dc.relation/*ref*/Aldila D., Götz T. & Soewono E. (2013). An optimal control problem arising from a dengue disease transmission model. Mathematical Biosciences; 242(1): 9–16. http://doi.org/http://dx.doi.org/10.1016/j.mbs.2012.11.014
dc.relation/*ref*/Álvarez J., Bezos J., de la Cruz M.L., Casal C., Romero B., Domínguez L., et al. (2014). Bovine tuberculosis: Within-herd transmission models to support and direct the decision-making process. Res Vet Sci; 97, Supple, S61 – S68. http://doi.org/http://dx.doi.org/10.1016/j.rvsc.2014.04.00
dc.relation/*ref*/Atkins K.E., Shim E., Pitzer V.E. & Galvani A.P. (2012). Impact of rotavirus vaccination on epidemiological dynamics in England and Wales. Vaccine; 30(3): 552–564. http://doi.org/http://dx.doi.org/10.1016/j.vaccine.2011.11.064
dc.relation/*ref*/Bacaër N. (2011). A Short History of Mathematical Population Dynamics. New York, Springer. http://doi.org/10.1007/978-0-85729-115-8
dc.relation/*ref*/Backer J.A., van Roermund H.J., Fischer E.A., van Asseldonk M.A. & Bergevoet, R.H. ()2015. Controlling highly pathogenic avian influenza outbreaks: An epidemiological and economic model analysis. Prev Vet Med; 121(1–2): 142–150. http://doi.org/http://dx.doi.org/10.1016/j.prevetmed.2015.06.006
dc.relation/*ref*/Bekara M.A., Courcoul A., Bénet J. & Durand B. (2014). Modeling tuberculosis dynamics, detection and control in cattle herds. PloS One; 9(9), e108584. http://doi.org/10.1371/journal.pone.0108584
dc.relation/*ref*/Binder B.J., Ross J.V. & Simpson M.J. (2012). A hybrid model for studying spatial aspects of infectious diseases. ANZIAM Journal; 54(1-2): 37–49. http://doi.org/10.1017/S1446181112000296Cai Y., Wang Z. & Wang W. (2016). Endemic dynamics in a host-parasite epidemiological model within spatially heterogeneous environment. Applied Mathematics Letters; 61: 129-136. http://doi.org/http://dx.doi.org/10.1016/j.aml.2016.05.011
dc.relation/*ref*/Casabán M., Cortés J., Navarro-Quiles A., Romero J., Roselló M. & Villanueva R. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation; 32: 199–210. http://doi.org/http://dx.doi.org/10.1016/j.cnsns.2015.08.009
dc.relation/*ref*/Casabán M., Cortés J., Romero J. & Roselló M. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation; 24(1–3): 86–97. http://doi.org/http://dx.doi.org/10.1016/j.cnsns.2014.12.016
dc.relation/*ref*/Cauchemez S. & Ferguson N.M. (2008). Likelihood-based estimation of continuous-time epidemic models from time-series data: Application to measles transmission in London. Journal of the Royal Society Interface; 5(25): 885–897. http://doi.org/10.1098/rsif.2007.1292
dc.relation/*ref*/Cortés J., Sánchez-Sánchez A., Santonja F. & Villanueva R.J. (2013). Non-parametric probabilistic forecasting of academic performance in Spanish high school using an epidemiological modelling approach. Applied Mathematics and Computation; 221: 648–661. http://doi.org/http://dx.doi.org/10.1016/j.amc.2013.06.070
dc.relation/*ref*/Daniel W.B., Hengartner N.W., Rivera M.K., Powell D.R. & McPherson T.N. (2013). An epidemiological model of spatial coupling for trips longer than the infectious period. Mathematical Biosciences; 242(1): 1–8. http://doi.org/http://dx.doi.org/10.1016/j.mbs.2012.11.002
dc.relation/*ref*/Fan K., Zhang Y. & Gao S. (2016). On a new eco-epidemiological model for migratory birds with modified Leslie-Gower functional schemes. Advances in Difference Equations; 97(1). http://doi.org/10.1186/s13662-016-0825-3
dc.relation/*ref*/Fischer E.A.J., van Roermund H.J.W., Hemerik L., van Asseldonk M.A.P.M. & de Jong M.C.M. (2005). Evaluation of surveillance strategies for bovine tuberculosis (Mycobacterium bovis) using an individual based epidemiological model. Prev Vet Med; 67(4): 283–301. http://doi.org/http://dx.doi.org/10.1016/j.prevetmed.2004.12.002
dc.relation/*ref*/Gaucel S., Laroche B., Ezanno P., Vergu E. & Touzeau S. (2009). Using singular perturbations to reduce an epidemiological model: Application to bovine viral diarrhoea virus within-herd spread. J Theor Biol; 258(3): 426–436. http://doi.org/http://dx.doi.org/10.1016/j.jtbi.2008.08.011
dc.relation/*ref*/Hernández M. (2007). Epidemiología: diseño y análisis de estudios. 2nd ed. Editorial Médica Panamericana. Holko A., Mȩdrek M., Pastuszak Z. & Phusavat K. (2016). Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Systems with Applications; 48: 1–8. http://doi.org/http://dx.doi.org/10.1016/j.eswa.2015.08.018
dc.relation/*ref*/Kang G.J., Gunaseelan L. & Abbas K.M. (2014). Epidemiological modeling of bovine brucellosis in India. In Big Data (Big Data), IEEE International Conference on 2014; 6–10. http://doi.org/10.1109/BigData.2014.7004420
dc.relation/*ref*/Kang G., Gunaseelan L. & Abbas K. (2015). Epidemiological dynamics of bovine brucellosis in India. Annals of Global Health; 81(1): 127–128. http://doi.org/http://dx.doi.org/10.1016/j.aogh.2015.02.793
dc.relation/*ref*/Kar T.K. & Jana S. (2013). A theoretical study on mathematical modelling of an infectious disease with application of optimal control. Biosystems; 111(1): 37–50. http://doi.org/http://dx.doi.org/10.1016/j.biosystems.2012.10.003
dc.relation/*ref*/Keeling M. J. & Rohani P. (2011). Modeling infectious diseases in Humans and Animals. New Jersey, USA: Princeton University Press. http://www.scopus.com/inward/record.url?eid=2-s2.0 84884049994&partnerID=40&md5=c999c61563de33ed4e8a6171c364ad25. Consultado 20 Jul, 2017.
dc.relation/*ref*/Kermack W.O. & McKendrick A.G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; 115(772): 700–721. http://doi.org/10.1098/rspa.1927.0118
dc.relation/*ref*/Ligarte M.D., Goicoa T., Ibáñez B. & Militino, A.F. (2009). Evaluating the performance of spatio-temporal Bayesian models in disease mapping. Environmetrics; 20(6): 647–665. http://doi.org/10.1002/env.969
dc.relation/*ref*/Marutschke D.M. & Ogawa H. (2014). Clustering Scientific Publication Trends in Cultural Context Using Epidemiological Model Parameters. Procedia Technology; 18: 90–95. http://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.11.018
dc.relation/*ref*/Milne C.E., Gunn G.J., Entrican G. & Longbottom D. (2009). Epidemiological modelling of chlamydial abortion in sheep flocks. Vet Microbiol; 135(1–2): 128–133. http://doi.org/http://dx.doi.org/10.1016/j.vetmic.2008.09.032
dc.relation/*ref*/Morris R.S. (2015). Diseases, dilemmas, decisions—Converting epidemiological dilemmas into successful disease control decisions. Prev Vet Med; 122(1–2): 242–252. http://doi.org/http://dx.doi.org/10.1016/j.prevetmed.2015.05.003
dc.relation/*ref*/Njagarah J.B. & Nyabadza F. (2014). A metapopulation model for cholera transmission dynamics between communities linked by migration. Applied Mathematics and Computation; 241: 317–331. http://doi.org/http://dx.doi.org/10.1016/j.amc.2014.05.036
dc.relation/*ref*/Öztürk Y. & Gülsu M. (2015). Numerical solution of a modified epidemiological model for computer viruses. Applied Mathematical Modelling; 39(23–24): 7600–7610. http://doi.org/http://dx.doi.org/10.1016/j.apm.2015.03.023
dc.relation/*ref*/Pedersen S. (2015). Algunos Modelos matemáticos para (algunas) enfermedades contagiosas: transmisión, infección, tratamiento [Tesis de Licenciatura]. Buenos Aires, Universidad de Buenos Aires.
dc.relation/*ref*/Pérez J. M. (2010). Inteligencia computacional inspirada en la vida. SPICUM – Universidad de Málaga.
dc.relation/*ref*/Pittavino M., Ferreri L., Giacobini M., Bertolotti L., Rosati S. & Venturino E. (2014). A CAEV epidemiological model for goat breeding. Applied Mathematics and Computation; 227: 156–163. http://doi.org/http://dx.doi.org/10.1016/j.amc.2013.11.030
dc.relation/*ref*/Rao D.M. (2016). Efficient parallel simulation of spatially-explicit agent-based epidemiological models. Journal of Parallel and Distributed Computing; 93–94: 102–119. http://doi.org/http://dx.doi.org/10.1016/j.jpdc.2016.04.004
dc.relation/*ref*/Rist C.L., Ngonghala C.N., Garchitorena A., Brook C.E., Ramananjato R., Miller A.C., et al. (2015). Modeling the burden of poultry disease on the rural poor in Madagascar. One Health; 1: 60–65. http://doi.org/http://dx.doi.org/10.1016/j.onehlt.2015.10.002
dc.relation/*ref*/Rodrigues H.S., Monteiro M.T.T. & Torres D.F.M. (2014). Vaccination models and optimal control strategies to dengue. Mathematical Biosciences; 247: 1–12. http://doi.org/http://dx.doi.org/10.1016/j.mbs.2013.10.006
dc.relation/*ref*/Rossi G., De Leo G.A., Pongolini S., Natalini S., Vincenzi S. & Bolzoni L. (2015). Epidemiological modelling for the assessment of bovine tuberculosis surveillance in the dairy farm network in Emilia-Romagna (Italy). Epidemics; 11: 62–70. http://doi.org/10.1016/j.epidem.2015.02.007
dc.relation/*ref*/Sahneh F.D., Vajdi A., Melander J. & Scoglio C.M. (2017). Contact Adaption during Epidemics: A Multilayer Network Formulation Approach. IEEE Transaction on Network Science and Engineering. DOI 10.1109/TNSE.2017.2770091
dc.relation/*ref*/Santman-Berends I.M.G.A., Mars M.H., van Duijn L. & van Schaik G. (2015). Evaluation of the epidemiological and economic consequences of control scenarios for bovine viral diarrhea virus in dairy herds. J Dairy Sci; 98(11): 7699–7716. http://doi.org/http://dx.doi.org/10.3168/jds.2014-9255
dc.relation/*ref*/Sato A.H., Ito I., Sawai H. & Iwata K. (2015). An epidemic simulation with a delayed stochastic SIR model based on international socioeconomic-technological databases. Big Data (Big Data), 2015 IEEE International Conference on: 2732–2741. http://doi.org/10.1109/BigData.2015.7364074
dc.relation/*ref*/Savall J.F., Bidot C., Leblanc-Maridor M., Belloc C. & Touzeau S. (2016). Modelling Salmonella transmission among pigs from farm to slaughterhouse: Interplay between management variability and epidemiological uncertainty. Int J Food Microbiol; 229: 33–43. http://doi.org/http://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.020
dc.relation/*ref*/Sieber M., Malchow H. & Hilker F.M. (2014). Disease-induced modification of prey competition in eco-epidemiological models. Ecological Complexity; 18: 74–82. http://doi.org/10.1016/j.ecocom.2013.06.002
dc.relation/*ref*/Ssematimba A., Jores J. & Mariner J.C. (2015). Mathematical modelling of the transmission dynamics of contagious bovine pleuropneumonia reveals minimal target profiles for improved vaccines and diagnostic assays. PLoS ONE 2015; 10(2). http://doi.org/10.1371/journal.pone.0116730
dc.relation/*ref*/Staubach C., Schmid V., Knorr-Held L. & Ziller M. (2002). A Bayesian model for spatial wildlife disease prevalence data. Prev Vet Med; 56(1): 75–87. http://doi.org/10.1016/S0167-5877(02)00125-3
dc.relation/*ref*/University of Chicago. (1989). Hipócrates. Hippocratic writings. On airs, waters and places. http://classics.mit.edu/Hippocrates/airwatpl.2.2.html. Consultado 23 Jul, 2017.
dc.relation/*ref*/Van Effelterre T., Marano C. & Jacobsen K.H. (2016). Modeling the hepatitis A epidemiological transition in Thailand. Vaccine; 34(4): 555–562. http://doi.org/http://dx.doi.org/10.1016/j.vaccine.2015.11.052
dc.relation/*ref*/Van Hulzen K.J.E., Koets A.P., Nielen M., Heuven H.C.M., Van Arendonk J.A.M.& Klinkenberg D. (2014). The effect of genetic selection for Johne’s disease resistance in dairy cattle: Results of a genetic-epidemiological model. J Dairy Sci; 97(3): 1762–1773. http://doi.org/10.3168/jds.2013-7032
dc.relation/*ref*/Vynnycky E. & White R. (2010). An Introduction to Infectious Disease Modelling. 1nd ed. OUP Oxford.
dc.relation/*ref*/Weidemann F., Dehnert M., Koch J., Wichmann O. & Höhle M. (2014). Modelling the epidemiological impact of rotavirus vaccination in Germany – A Bayesian approach. Vaccine; 32(40): 5250–5257. http://doi.org/http://dx.doi.org/10.1016/j.vaccine.2014.06.090
dc.relation/*ref*/Yakob L., Riley T.V., Paterson D.L. & Clements A.C.A. (2013). Clostridium difficile exposure as an insidious source of infection in healthcare settings: An epidemiological model. BMC Infectious Diseases; 13(1). http://doi.org/10.1186/1471-2334-13-376
dc.relation/*ref*/Zaman G., Kang Y.H. & Jung I.H. (2009). Optimal treatment of an SIR epidemic model with time delay. Biosystems; 98(1): 43–50. http://doi.org/http://dx.doi.org/10.1016/j.biosystems.2009.05.006
dc.relation/*ref*/Zhang Q., Jiang D., Liu Z., O’Regan D. (2016). Asymptotic behavior of a three species eco-epidemiological model perturbed by white noise. Journal of Mathematical Analysis and Applications; 433(1): 121–148. http://doi.org/http://dx.doi.org/10.1016/j.jmaa.2015.07.025
dc.rightsCopyright (c) 2018 Revista de Investigación Agraria y Ambiental
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.sourceRevista de Investigación Agraria y Ambiental; Vol. 10, Núm. 1 (2019); 27 - 42
dc.sourceRevista de Investigación Agraria y Ambiental; Vol. 10, Núm. 1 (2019); 27 - 42
dc.source2145-6453
dc.source2145-6097
dc.subjectinfectious diseases; epidemiological model; impact; epidemic control.
dc.subjectControl de epidemias; enfermedades infecciosas; impacto; modelo epidemiológico
dc.titleAnalisyng the evolution of infectious diseases modelling
dc.titleAnalizando la evolución del modelado de enfermedades infecciosas
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución