dc.creatorCatumba, Jorge
dc.creatorRentería, Rafael
dc.creatorRedondo, Johan Manuel
dc.creatorAguiar, Leonar
dc.creatorBarrera, José Octaviano
dc.date.accessioned2019-11-08T21:18:39Z
dc.date.accessioned2022-09-28T12:02:12Z
dc.date.available2019-11-08T21:18:39Z
dc.date.available2022-09-28T12:02:12Z
dc.date.created2019-11-08T21:18:39Z
dc.identifierhttps://repository.unad.edu.co/handle/10596/28712
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3622750
dc.publisherUNAD
dc.relationhttp://hemeroteca.unad.edu.co/index.php/memorias/article/view/3069/3105
dc.relation/*ref*/Barrachina, J., Garrido, P., Fogue, M., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2014). Reducing emergency services arrival time by using vehicular communications and Evolution Strategies. Expert Systems with Applications, 41(4), 1206–1217. https://doi.org/10.1016/J.ESWA.2013.08.004
dc.relation/*ref*/Beck, A. (2008). Simulation: the practice of model development and use. Journal of Simulation, 2.
dc.relation/*ref*/Benatar, S. R., & Ashcroft, R. (2017). International Perspectives on Resource Allocation. In S. R. Quah (Ed.), International Encyclopedia of Public Health (Second Edition) (Second Edi, pp. 316–321). Oxford: Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-803678-5.00380-5
dc.relation/*ref*/Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after earthquake disasters. Safety Science, 35(1–3), 41–57. https://doi.org/10.1016/S0925-7535(00)00021-7
dc.relation/*ref*/Fogel, D. B., Kennedy, J., Eberhart, R. C., Shi, Y., Jacob, C., Peter, E., … Francone, F. D. (n.d.). Genetic Programming: An Introduction.
dc.relation/*ref*/Hawe, G. I., Coates, G., Wilson, D. T., & Crouch, R. S. (2015). Agent-based simulation of emergency response to plan the allocation of resources for a hypothetical two-site major incident. Engineering Applications of Artificial Intelligence, 46, 336–345. https://doi.org/https://doi.org/10.1016/j.engappai.2015.06.023
dc.relation/*ref*/Huang, Y., & Fan, Y. (2011). Modeling Uncertainties in Emergency Service Resource Allocation. Journal of Infrastructure Systems, 17(1), 35–41. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000040
dc.relation/*ref*/Kim, T. H., Lee, K., Shin, S. Do, Ro, Y. S., Tanaka, H., Yap, S., … Leong, B. (2017). Association of the Emergency Medical Services–Related Time Interval with Survival Outcomes of Out-of-Hospital Cardiac Arrest Cases in Four Asian Metropolitan Cities Using the Scoop-and-Run Emergency Medical Services Model. The Journal of Emergency Medicine, 53(5), 688–696.e1. https://doi.org/10.1016/J.JEMERMED.2017.08.076
dc.relation/*ref*/Luscombe, R., & Kozan, E. (2016). Dynamic resource allocation to improve emergency department efficiency in real time. European Journal of Operational Research, 255(2), 593–603. https://doi.org/https://doi.org/10.1016/j.ejor.2016.05.039
dc.relation/*ref*/Pradhananga, R., Mutlu, F., Pokharel, S., Holguín-Veras, J., & Seth, D. (2016). An integrated resource allocation and distribution model for pre-disaster planning. Computers & Industrial Engineering, 91, 229–238. https://doi.org/10.1016/j.cie.2015.11.010
dc.relation/*ref*/Schluck, G., Wu, W., Whyte, J., & Abbott, L. (2018). Emergency department arrival times in Florida heart failure patients utilizing Fisher-Rao curve registration: A descriptive population-based study. Heart & Lung. https://doi.org/10.1016/j.hrtlng.2018.05.020
dc.rightsCopyright (c) 2019 Memorias
dc.sourceMemorias; Workshop and International Seminar on Complexity Sciencies; 73 - 79
dc.source2590-4779
dc.subjectGenetic Algorithms; Discrete Event Simulation; Hybrid Modeling; Emergency Medical Services; arrival time; Optimization
dc.titleA first approach to a hybrid algorithm for mobile emergency resources allocation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pares


Este ítem pertenece a la siguiente institución