dc.contributor | Núñez López, Andrés Mauricio | |
dc.contributor | Gamba Gómez, Osmar Albert | |
dc.creator | Chaparro Fajardo, Angie Lizeth | |
dc.date.accessioned | 2022-09-22T19:31:07Z | |
dc.date.accessioned | 2022-09-27T13:59:17Z | |
dc.date.available | 2022-09-22T19:31:07Z | |
dc.date.available | 2022-09-27T13:59:17Z | |
dc.date.created | 2022-09-22T19:31:07Z | |
dc.date.issued | 2021 | |
dc.identifier | Chaparro Fajardo, A. L. (2021). Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas. [Trabajo pregrado, Universidad Pedagógica y Tecnológica de Colombia]. http://repositorio.uptc.edu.co/handle/001/8817 | |
dc.identifier | http://repositorio.uptc.edu.co/handle/001/8817 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3602761 | |
dc.description.abstract | Spa: La presente investigación tiene como fin evaluar el comportamiento de un pavimento permeable, a partir de ensayos de resistencia a flexión y compresión, así como pruebas de infiltración y porosidad. Se busca obtener resultados confiables para el diseño de mezcla de un concreto permeable con y sin agregado fino, y con adición de fibras sintéticas, generando un diseño de mezcla óptimo para dar solución a los problemas de baja resistencia mecánica, y baja durabilidad comúnmente presentes. En la investigación se partirá por detallar el comportamiento del concreto permeable a nivel mundial, así como sus avances y contribuciones en el desarrollo de la ciencia de los materiales, se estudiaran dos métodos comúnmente usados para el diseño de mezcla, se define el tamaño de agregado grueso optimo, se establece el método
de mezclado y de compactación pertinentes para este tipo de concreto, se realiza la
caracterización de los materiales empleados para la elaboración de los especímenes, se analiza la cantidad optima de aditivos a incluir en el diseño de mezcla, y se realizan ocho tipos de mezclas para concreto permeable variando el porcentaje de fibras a adicionar en porcentajes de 3%, 5% y 7%, finalmente, se realizara un símil entre los resultados obtenidos y se presentara el diseño de mezcla optimo, de tal manera que este pueda ser utilizado de manera confiable y directa garantizando las condiciones de permeabilidad. | |
dc.language | spa | |
dc.publisher | Universidad Pedagógica y Tecnológica de Colombia | |
dc.publisher | Facultad Ingeniería | |
dc.publisher | Tunja | |
dc.publisher | Ingeniería Civil | |
dc.relation | ACI. (2010). Report on Pervious Concrete. In ACI Commitee 522 (Issue March). https://www.concrete.org/Portals/0/Files/PDF/Previews/522R-10web.pdf | |
dc.relation | Agar-Ozbek, A. S., Weerheijm, J., Schlangen, E., & Van Breugel, K. (2013). Investigating porous concrete with improved strength: Testing at different scales. Construction and Building Materials, 41, 480–490. https://doi.org/10.1016/j.conbuildmat.2012.12.040 | |
dc.relation | Ahmed, A. M., Hussein, A. H., & Hammood, M. T. (2019). Recycling of disposal Polypropylene Blister Tablets and Strapping ties as fiber reinforcement for Pervious concrete. IOP Conference Series: Materials Science and Engineering, 584(1). https://doi.org/10.1088/1757-899X/584/1/012031 | |
dc.relation | Akand, L., Yang, M., & Wang, X. (2018). Effectiveness of chemical treatment on polypropylene fibers as reinforcement in pervious concrete. Construction and Building Materials, 163, 32–39. https://doi.org/10.1016/j.conbuildmat.2017.12.068 | |
dc.relation | AlShareedah, O., Nassiri, S., Chen, Z., Englund, K., Li, H., & Fakron, O. (2019). Field performance evaluation of pervious concrete pavement reinforced with novel discrete reinforcement. Case Studies in Construction Materials, 10, e00231. https://doi.org/10.1016/j.cscm.2019.e00231 | |
dc.relation | AlShareedah, O., Nassiri, S., & Dolan, J. D. (2019). Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Construction and Building Materials, 207, 17–27. https://doi.org/10.1016/j.conbuildmat.2019.02.111 | |
dc.relation | Angela Susan Hager. (2008). SUSTAINABLE DESIGN OF PERVIOUS CONCRETE PAVEMENTS. Education, August | |
dc.relation | Argos. (2019). PAVIMENTOS DE CONCRETO: ENSAYO DE COMPRESIÓN VS. ENSAYO DE FLEXIÓN. https://www.360enconcreto.com/blog/que-hacercuando/ensayo-compresion-ensayo-flexion-del-concreto | |
dc.relation | Argos, C., & Arango, S. E. (2016a). Concreto permeable (1 de 2). 3, 80–85 | |
dc.relation | Argos, C., & Arango, S. E. (2016b). Concreto permeable (2 de 2). 3, 80–85 | |
dc.relation | Bhutta, M. A. R., Tsuruta, K., & Mirza, J. (2012). Evaluation of high-performance porous | |
dc.relation | concrete properties. Construction and Building Materials, 31, 67–73. https://doi.org/10.1016/j.conbuildmat.2011.12.024 | |
dc.relation | Bonicelli, A., Arguelles, G. M., & Pumarejo, L. G. F. (2016). Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads. Procedia Engineering, 161, 1568–1573. https://doi.org/10.1016/j.proeng.2016.08.628 | |
dc.relation | Bonicelli, A., Giustozzi, F., & Crispino, M. (2015). Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Construction and Building Materials, 91, 102–110. https://doi.org/10.1016/j.conbuildmat.2015.05.012 | |
dc.relation | Bonicelli Alessandra, G. M. G. F. (2016). Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads. Procedia Engineering, 161, 1568–1573. https://doi.org/10.1016/j.proeng.2016.08.628 | |
dc.relation | Brake, N. A., Allahdadi, H., & Adam, F. (2016). Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials, 113, 536–543. https://doi.org/10.1016/j.conbuildmat.2016.03.045 | |
dc.relation | Caetano, H., Rodrigues, J. P. C., & Pimienta, P. (2019). Flexural strength at high temperatures of a high strength steel and polypropylene fibre concrete. Construction and Building Materials, 227, 116721. https://doi.org/10.1016/j.conbuildmat.2019.116721 | |
dc.relation | Chandrappa, A. K., & Biligiri, K. P. (2016). Pervious concrete as a sustainable pavement material – Research findings and future prospects : A state-of-the-art review. Construction and Building Materials, 111, 262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054 | |
dc.relation | Chandrappa, A. K., & Biligiri, K. P. (2017). Flexural-fatigue characteristics of pervious concrete: Statistical distributions and model development. Construction and Building Materials, 153, 1–15. https://doi.org/10.1016/j.conbuildmat.2017.07.081 | |
dc.relation | Chang, J. J., Yeih, W., Chung, T. J., & Huang, R. (2016). Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Construction and Building Materials, 109, 34–40. https://doi.org/10.1016/j.conbuildmat.2016.01.049 | |
dc.relation | Chen, J., Yin, X., Wang, H., & Ding, Y. (2018). Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement. Journal of Cleaner Production, 188, 12–19. https://doi.org/10.1016/j.jclepro.2018.03.297 | |
dc.relation | Chen, Y., Wang, K., Wang, X., & Zhou, W. (2013). Strength, fracture and fatigue of pervious concrete. Construction and Building Materials, 42, 97–104. https://doi.org/10.1016/j.conbuildmat.2013.01.006 | |
dc.relation | Crouch, L. K., Smith, N., Walker, A. C., Tim R. Dunn, A., & Sparkman, A. (2006). Determining Pervious PCC Permeability with a Simple Triaxial Flexible-Wall Constant Head Permeameter. 931, هرامش 8; ص 99-117. | |
dc.relation | Dávila, C. J. M. C. A. y P. (2011). INFLUENCIA DE LAS FIBRAS DE POLIPROPILENO EN LAS PROPIEDADES DEL CONCRETO EN ESTADOS PLÁSTICO Y ENDURECIDO. 2, 36. | |
dc.relation | Debnath, B., & Sarkar, P. P. (2019). Permeability prediction and pore structure feature of pervious concrete using brick as aggregate. Construction and Building Materials, 213, 643–651. https://doi.org/10.1016/j.conbuildmat.2019.04.099 | |
dc.relation | Deo, O., & Neithalath, N. (2011). Compressive response of pervious concretes proportioned for desired porosities. Construction and Building Materials, 25(11), 4181–4189. https://doi.org/10.1016/j.conbuildmat.2011.04.055 | |
dc.relation | Eidan, J., Rasoolan, I., Rezaeian, A., & Poorveis, D. (2019). Residual mechanical properties of polypropylene fiber-reinforced concrete after heating. Construction and Building Materials, 198, 195–206. https://doi.org/10.1016/j.conbuildmat.2018.11.209 | |
dc.relation | Giustozzi, F. (2016). Polymer-modified pervious concrete for durable and sustainable transportation infrastructures. Construction and Building Materials, 111, 502–512. https://doi.org/10.1016/j.conbuildmat.2016.02.136 | |
dc.relation | Grubeša, I. N., Barišić, I., Ducman, V., & Korat, L. (2018). Draining capability of singlesized pervious concrete. Construction and Building Materials, 169, 252–260. https://doi.org/10.1016/j.conbuildmat.2018.03.037 | |
dc.relation | Guzmán, D. S. de. (n.d.). Tecnologia del concreto y del mortero. | |
dc.relation | Hesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Hesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building | |
dc.relation | Huang, B., Wu, H., Shu, X., & Burdette, E. G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials, 24(5), 818–823. https://doi.org/10.1016/j.conbuildmat.2009.10.025 | |
dc.relation | Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50, 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022 | |
dc.relation | Kayhanian, M., Li, H., Harvey, J. T., & Liang, X. (2019). Application of permeable pavements in highways for stormwater runoff management and pollution prevention: California research experiences. International Journal of Transportation Science and Technology, 8(4), 358–372. https://doi.org/10.1016/j.ijtst.2019.01.001 | |
dc.relation | Kevern, J. T. (2015). Evaluating permeability and infiltration requirements for pervious concrete. Journal of Testing and Evaluation, 43(3), 544–553. https://doi.org/10.1520/JTE20130180 | |
dc.relation | Kia, A., Wong, H. S., & Cheeseman, C. R. (2017). Clogging in permeable concrete: A review. Journal of Environmental Management, 193(September), 221–233. https://doi.org/10.1016/j.jenvman.2017.02.018 | |
dc.relation | Kim, Y. J., Gaddafi, A., & Yoshitake, I. (2016). Permeable concrete mixed with various admixtures. Materials and Design, 100, 110–119. https://doi.org/10.1016/j.matdes.2016.03.109 | |
dc.relation | Korat, L., Ducman, V., & Netinger, I. (2015). Influence of aggregate type and size on properties of pervious concrete. 78, 69–76. https://doi.org/10.1016/j.conbuildmat.2014.12.073 | |
dc.relation | Lian, C., & Zhuge, Y. (2010a). Optimum mix design of enhanced permeable concrete - An experimental investigation. Construction and Building Materials, 24(12), 2664– 2671. https://doi.org/10.1016/j.conbuildmat.2010.04.057 | |
dc.relation | Lian, C., & Zhuge, Y. (2010b). Optimum mix design of enhanced permeable concrete - An experimental investigation. Construction and Building Materials, 24(12), 2664. | |
dc.relation | Lian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength for porous concrete. Construction and Building Materials, 25(11), 4294– 4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005 | |
dc.relation | Liu, T., Wang, Z., Zou, D., Zhou, A., & Du, J. (2019). Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method. Cement and Concrete Research, 122(May), 72–82. https://doi.org/10.1016/j.cemconres.2019.05.004 | |
dc.relation | López-Carrasquillo, V., & Hwang, S. (2017). Comparative assessment of pervious concrete mixtures containing fly ash and nanomaterials for compressive strength, physical durability, permeability, water quality performance and production cost. Construction and Building Materials, 139, 148–158. https://doi.org/10.1016/j.conbuildmat.2017.02.052 | |
dc.relation | Lopez, R., Pialarissi, S., Pujadas, P., & Aguado, A. (2017). Innovaciones y avances en el ambito de los pavimentos urbanos para smart cities. 8. | |
dc.relation | Lu, G., Renken, L., Li, T., Wang, D., Li, H., & Oeser, M. (2019). Experimental study on the polyurethane-bound pervious mixtures in the application of permeable pavements. Construction and Building Materials, 202, 838–850. https://doi.org/10.1016/j.conbuildmat.2019.01.051 | |
dc.relation | Maguesvari, M. U., & Narasimha, V. L. (2013). Studies on Characterization of Pervious Concrete for Pavement Applications. Procedia - Social and Behavioral Sciences, 104, 198–207. https://doi.org/10.1016/j.sbspro.2013.11.112 | |
dc.relation | Meddah, M. S., & Hago, A. W. (2017). ScienceDirect Effect of granular fraction combinations on pervious concrete performance. Materials Today: Proceedings, 4(9), 9700–9704. https://doi.org/10.1016/j.matpr.2017.06.250 | |
dc.relation | Meininger, R. C. (1988). Pervious Concrete lar Paving. | |
dc.relation | Mohammed, B. S., Liew, M. S., Alaloul, W. S., Khed, V. C., Hoong, C. Y., & Adamu, M. (2018). Properties of nano-silica modified pervious concrete. Case Studies in Construction Materials, 8(January), 409–422. https://doi.org/10.1016/j.cscm.2018.03.009 | |
dc.relation | National Ready Mixed Concrete Association •. (n.d.). PIP 3 – Acceptance Testing of Pervious Concrete. | |
dc.relation | Nguyen, D. H., Sebaibi, N., Boutouil, M., Leleyter, L., & Baraud, F. (2014). A modified method for the design of pervious concrete mix. Construction and Building Materials, 73, 271–282. https://doi.org/10.1016/j.conbuildmat.2014.09.088 | |
dc.relation | Paul, T. D., Michael, L. L., David, A. J., Tennis, P. D., Leming, M. L., & Akers, D. J. (2004). Pervious Concrete Pavements : Vol. Portland C (Issue January 2004). | |
dc.relation | Portland Cement Association. (2004). Diseño y Control de Mezclas de Diseño y Control de Mezclas de Concreto. | |
dc.relation | Rahman, S., Northmore, A. B., Henderson, V., & Tighe, S. L. (2015). Developing A Framework for Low-Volume Road Implementation of Pervious Concrete Pavements. International Journal of Transportation Science and Technology, 4(1), 77–91. https://doi.org/10.1260/2046-0430.4.1.77 | |
dc.relation | Rangelov, M., Nassiri, S., Chen, Z., Russell, M., & Uhlmeyer, J. (2017). ScienceDirect Quality evaluation tests for pervious concrete pavements ’ placement. International Journal of Pavement Research and Technology, 10(3), 245–253. https://doi.org/10.1016/j.ijprt.2017.01.007 | |
dc.relation | Rangelov, M., Nassiri, S., Haselbach, L., & Englund, K. (2016). Using carbon fiber composites for reinforcing pervious concrete. Construction and Building Materials, 126, 875–885. https://doi.org/10.1016/j.conbuildmat.2016.06.035 | |
dc.relation | Rehder, B., Banh, K., & Neithalath, N. (2014). Fracture behavior of pervious concretes: The effects of pore structure and fibers. Engineering Fracture Mechanics, 118, 1– 16. https://doi.org/10.1016/j.engfracmech.2014.01.015 | |
dc.relation | Rostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., & Abtahi, S. M. (2019). The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cement and Concrete Composites, 97(August 2018), 118–124. https://doi.org/10.1016/j.cemconcomp.2018.12.012 | |
dc.relation | Saadeh, S., Ralla, A., Al-Zubi, Y., Wu, R., & Harvey, J. (2019). Application of fully permeable pavements as a sustainable approach for mitigation of stormwater runoff. International Journal of Transportation Science and Technology, 8(4), 338–350. https://doi.org/10.1016/j.ijtst.2019.02.001 | |
dc.relation | Sartipi, M., & Sartipi, F. (2019). Stormwater retention using pervious concrete pavement: Great Western Sydney case study. Case Studies in Construction Materials, 11, e00274. https://doi.org/10.1016/j.cscm.2019.e00274 | |
dc.relation | Schaefer, V. R., & Kevern, J. T. (2011). An Integrated Study of Pervious Concrete Mixture Design for Wearing Course Applications An Integrated Study of Pervious Concrete Mixture Design for Wearing. | |
dc.relation | Shu, X., Huang, B., Wu, H., Dong, Q., & Burdette, E. G. (2011). Performance comparison of laboratory and field produced pervious concrete mixtures. Construction and Building Materials, 25(8), 3187–3192. https://doi.org/10.1016/j.conbuildmat.2011.03.002 | |
dc.relation | Sun, J. (2013). Strength criterion for ecological light porous concrete under multiaxial stress. Construction and Building Materials, 44, 663–670. https://doi.org/10.1016/j.conbuildmat.2013.03.062 | |
dc.relation | Tabatabaeian, M., Khaloo, A., & Khaloo, H. (2019). An innovative high performance pervious concrete with polyester and epoxy resins. Construction and Building Materials, 228, 116820. https://doi.org/10.1016/j.conbuildmat.2019.116820 | |
dc.relation | Tang, C. W., Cheng, C. K., & Tsai, C. Y. (2019). Mix design and mechanical properties of high-performance pervious concrete. Materials, 12(16). https://doi.org/10.3390/ma12162577 | |
dc.relation | Torres, A., Hu, J., & Ramos, A. (2015). The effect of the cementitious paste thickness on the performance of pervious concrete. Construction and Building Materials, 95, 850–859. https://doi.org/10.1016/j.conbuildmat.2015.07.187 | |
dc.relation | Wang, D., Ju, Y., Shen, H., & Xu, L. (2019). Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Materials, 197, 464–473. https://doi.org/10.1016/j.conbuildmat.2018.11.181 | |
dc.relation | Wang, H., Li, H., Liang, X., Zhou, H., Xie, N., & Dai, Z. (2019). Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Construction and Building Materials, 202, 387–395. https://doi.org/10.1016/j.conbuildmat.2019.01.044 | |
dc.relation | Xie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. Journal of Cleaner Production, 210, 1605– 1621. https://doi.org/10.1016/j.jclepro.2018.11.134 | |
dc.relation | Xu, G., Shen, W., Huo, X., Yang, Z., Wang, J., Zhang, W., & Ji, X. (2018). Investigation on the properties of porous concrete as road base material. Construction and Building Materials, 158, 141–148. https://doi.org/10.1016/j.conbuildmat.2017.09.151 | |
dc.relation | Zhang, A., Li, Z., Zhou, M., Cao, Y., Jiang, B., & Qiu, S. (2011). Research on permeable concrete interface structure. 2011 International Conference on Electric Technology and Civil Engineering, ICETCE 2011 - Proceedings, 3410–3412. https://doi.org/10.1109/ICETCE.2011.5775780 | |
dc.relation | Zhong, R., & Wille, K. (2015). Material design and characterization of high performance pervious concrete. Construction and Building Materials, 98, 51–60. https://doi.org/10.1016/j.conbuildmat.2015.08.027 | |
dc.relation | Zhong, R., & Wille, K. (2016). Compression response of normal and high strength pervious concrete. Construction and Building Materials, 109, 177–187. https://doi.org/10.1016/j.conbuildmat.2016.01.051 | |
dc.relation | Zhong, R., & Wille, K. (2018). Influence of matrix and pore system characteristics on the durability of pervious concrete. Construction and Building Materials, 162, 132–141. https://doi.org/10.1016/j.conbuildmat.2017.11.175 | |
dc.relation | Zhou, H., Li, H., Abdelhady, A., Liang, X., Wang, H., & Yang, B. (2019). Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning. Construction and Building Materials, 212, 130– 139. https://doi.org/10.1016/j.conbuildmat.2019.03.310 | |
dc.relation | Zhou, J., Zheng, M., Wang, Q., Yang, J., & Lin, T. (2016). Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Construction and Building Materials, 124, 897–905. https://doi.org/10.1016/j.conbuildmat.2016.07.136 | |
dc.relation | Zhu, H., Yu, M., Zhu, J., Lu, H., & Cao, R. (2019). Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International Journal of Transportation Science and Technology, 8(4), 373–382. https://doi.org/10.1016/j.ijtst.2018.12.001 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Copyright (c) 2021 Universidad Pedagógica y Tecnológica de Colombia | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas | |
dc.type | Trabajo de grado - Pregrado | |