dc.contributorNúñez López, Andrés Mauricio
dc.contributorGamba Gómez, Osmar Albert
dc.creatorChaparro Fajardo, Angie Lizeth
dc.date.accessioned2022-09-22T19:31:07Z
dc.date.accessioned2022-09-27T13:59:17Z
dc.date.available2022-09-22T19:31:07Z
dc.date.available2022-09-27T13:59:17Z
dc.date.created2022-09-22T19:31:07Z
dc.date.issued2021
dc.identifierChaparro Fajardo, A. L. (2021). Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas. [Trabajo pregrado, Universidad Pedagógica y Tecnológica de Colombia]. http://repositorio.uptc.edu.co/handle/001/8817
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/8817
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3602761
dc.description.abstractSpa: La presente investigación tiene como fin evaluar el comportamiento de un pavimento permeable, a partir de ensayos de resistencia a flexión y compresión, así como pruebas de infiltración y porosidad. Se busca obtener resultados confiables para el diseño de mezcla de un concreto permeable con y sin agregado fino, y con adición de fibras sintéticas, generando un diseño de mezcla óptimo para dar solución a los problemas de baja resistencia mecánica, y baja durabilidad comúnmente presentes. En la investigación se partirá por detallar el comportamiento del concreto permeable a nivel mundial, así como sus avances y contribuciones en el desarrollo de la ciencia de los materiales, se estudiaran dos métodos comúnmente usados para el diseño de mezcla, se define el tamaño de agregado grueso optimo, se establece el método de mezclado y de compactación pertinentes para este tipo de concreto, se realiza la caracterización de los materiales empleados para la elaboración de los especímenes, se analiza la cantidad optima de aditivos a incluir en el diseño de mezcla, y se realizan ocho tipos de mezclas para concreto permeable variando el porcentaje de fibras a adicionar en porcentajes de 3%, 5% y 7%, finalmente, se realizara un símil entre los resultados obtenidos y se presentara el diseño de mezcla optimo, de tal manera que este pueda ser utilizado de manera confiable y directa garantizando las condiciones de permeabilidad.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.publisherFacultad Ingeniería
dc.publisherTunja
dc.publisherIngeniería Civil
dc.relationACI. (2010). Report on Pervious Concrete. In ACI Commitee 522 (Issue March). https://www.concrete.org/Portals/0/Files/PDF/Previews/522R-10web.pdf
dc.relationAgar-Ozbek, A. S., Weerheijm, J., Schlangen, E., & Van Breugel, K. (2013). Investigating porous concrete with improved strength: Testing at different scales. Construction and Building Materials, 41, 480–490. https://doi.org/10.1016/j.conbuildmat.2012.12.040
dc.relationAhmed, A. M., Hussein, A. H., & Hammood, M. T. (2019). Recycling of disposal Polypropylene Blister Tablets and Strapping ties as fiber reinforcement for Pervious concrete. IOP Conference Series: Materials Science and Engineering, 584(1). https://doi.org/10.1088/1757-899X/584/1/012031
dc.relationAkand, L., Yang, M., & Wang, X. (2018). Effectiveness of chemical treatment on polypropylene fibers as reinforcement in pervious concrete. Construction and Building Materials, 163, 32–39. https://doi.org/10.1016/j.conbuildmat.2017.12.068
dc.relationAlShareedah, O., Nassiri, S., Chen, Z., Englund, K., Li, H., & Fakron, O. (2019). Field performance evaluation of pervious concrete pavement reinforced with novel discrete reinforcement. Case Studies in Construction Materials, 10, e00231. https://doi.org/10.1016/j.cscm.2019.e00231
dc.relationAlShareedah, O., Nassiri, S., & Dolan, J. D. (2019). Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Construction and Building Materials, 207, 17–27. https://doi.org/10.1016/j.conbuildmat.2019.02.111
dc.relationAngela Susan Hager. (2008). SUSTAINABLE DESIGN OF PERVIOUS CONCRETE PAVEMENTS. Education, August
dc.relationArgos. (2019). PAVIMENTOS DE CONCRETO: ENSAYO DE COMPRESIÓN VS. ENSAYO DE FLEXIÓN. https://www.360enconcreto.com/blog/que-hacercuando/ensayo-compresion-ensayo-flexion-del-concreto
dc.relationArgos, C., & Arango, S. E. (2016a). Concreto permeable (1 de 2). 3, 80–85
dc.relationArgos, C., & Arango, S. E. (2016b). Concreto permeable (2 de 2). 3, 80–85
dc.relationBhutta, M. A. R., Tsuruta, K., & Mirza, J. (2012). Evaluation of high-performance porous
dc.relationconcrete properties. Construction and Building Materials, 31, 67–73. https://doi.org/10.1016/j.conbuildmat.2011.12.024
dc.relationBonicelli, A., Arguelles, G. M., & Pumarejo, L. G. F. (2016). Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads. Procedia Engineering, 161, 1568–1573. https://doi.org/10.1016/j.proeng.2016.08.628
dc.relationBonicelli, A., Giustozzi, F., & Crispino, M. (2015). Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Construction and Building Materials, 91, 102–110. https://doi.org/10.1016/j.conbuildmat.2015.05.012
dc.relationBonicelli Alessandra, G. M. G. F. (2016). Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads. Procedia Engineering, 161, 1568–1573. https://doi.org/10.1016/j.proeng.2016.08.628
dc.relationBrake, N. A., Allahdadi, H., & Adam, F. (2016). Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials, 113, 536–543. https://doi.org/10.1016/j.conbuildmat.2016.03.045
dc.relationCaetano, H., Rodrigues, J. P. C., & Pimienta, P. (2019). Flexural strength at high temperatures of a high strength steel and polypropylene fibre concrete. Construction and Building Materials, 227, 116721. https://doi.org/10.1016/j.conbuildmat.2019.116721
dc.relationChandrappa, A. K., & Biligiri, K. P. (2016). Pervious concrete as a sustainable pavement material – Research findings and future prospects : A state-of-the-art review. Construction and Building Materials, 111, 262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054
dc.relationChandrappa, A. K., & Biligiri, K. P. (2017). Flexural-fatigue characteristics of pervious concrete: Statistical distributions and model development. Construction and Building Materials, 153, 1–15. https://doi.org/10.1016/j.conbuildmat.2017.07.081
dc.relationChang, J. J., Yeih, W., Chung, T. J., & Huang, R. (2016). Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Construction and Building Materials, 109, 34–40. https://doi.org/10.1016/j.conbuildmat.2016.01.049
dc.relationChen, J., Yin, X., Wang, H., & Ding, Y. (2018). Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement. Journal of Cleaner Production, 188, 12–19. https://doi.org/10.1016/j.jclepro.2018.03.297
dc.relationChen, Y., Wang, K., Wang, X., & Zhou, W. (2013). Strength, fracture and fatigue of pervious concrete. Construction and Building Materials, 42, 97–104. https://doi.org/10.1016/j.conbuildmat.2013.01.006
dc.relationCrouch, L. K., Smith, N., Walker, A. C., Tim R. Dunn, A., & Sparkman, A. (2006). Determining Pervious PCC Permeability with a Simple Triaxial Flexible-Wall Constant Head Permeameter. 931, هرامش 8; ص 99-117.
dc.relationDávila, C. J. M. C. A. y P. (2011). INFLUENCIA DE LAS FIBRAS DE POLIPROPILENO EN LAS PROPIEDADES DEL CONCRETO EN ESTADOS PLÁSTICO Y ENDURECIDO. 2, 36.
dc.relationDebnath, B., & Sarkar, P. P. (2019). Permeability prediction and pore structure feature of pervious concrete using brick as aggregate. Construction and Building Materials, 213, 643–651. https://doi.org/10.1016/j.conbuildmat.2019.04.099
dc.relationDeo, O., & Neithalath, N. (2011). Compressive response of pervious concretes proportioned for desired porosities. Construction and Building Materials, 25(11), 4181–4189. https://doi.org/10.1016/j.conbuildmat.2011.04.055
dc.relationEidan, J., Rasoolan, I., Rezaeian, A., & Poorveis, D. (2019). Residual mechanical properties of polypropylene fiber-reinforced concrete after heating. Construction and Building Materials, 198, 195–206. https://doi.org/10.1016/j.conbuildmat.2018.11.209
dc.relationGiustozzi, F. (2016). Polymer-modified pervious concrete for durable and sustainable transportation infrastructures. Construction and Building Materials, 111, 502–512. https://doi.org/10.1016/j.conbuildmat.2016.02.136
dc.relationGrubeša, I. N., Barišić, I., Ducman, V., & Korat, L. (2018). Draining capability of singlesized pervious concrete. Construction and Building Materials, 169, 252–260. https://doi.org/10.1016/j.conbuildmat.2018.03.037
dc.relationGuzmán, D. S. de. (n.d.). Tecnologia del concreto y del mortero.
dc.relationHesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Hesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building
dc.relationHuang, B., Wu, H., Shu, X., & Burdette, E. G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials, 24(5), 818–823. https://doi.org/10.1016/j.conbuildmat.2009.10.025
dc.relationIbrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50, 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022
dc.relationKayhanian, M., Li, H., Harvey, J. T., & Liang, X. (2019). Application of permeable pavements in highways for stormwater runoff management and pollution prevention: California research experiences. International Journal of Transportation Science and Technology, 8(4), 358–372. https://doi.org/10.1016/j.ijtst.2019.01.001
dc.relationKevern, J. T. (2015). Evaluating permeability and infiltration requirements for pervious concrete. Journal of Testing and Evaluation, 43(3), 544–553. https://doi.org/10.1520/JTE20130180
dc.relationKia, A., Wong, H. S., & Cheeseman, C. R. (2017). Clogging in permeable concrete: A review. Journal of Environmental Management, 193(September), 221–233. https://doi.org/10.1016/j.jenvman.2017.02.018
dc.relationKim, Y. J., Gaddafi, A., & Yoshitake, I. (2016). Permeable concrete mixed with various admixtures. Materials and Design, 100, 110–119. https://doi.org/10.1016/j.matdes.2016.03.109
dc.relationKorat, L., Ducman, V., & Netinger, I. (2015). Influence of aggregate type and size on properties of pervious concrete. 78, 69–76. https://doi.org/10.1016/j.conbuildmat.2014.12.073
dc.relationLian, C., & Zhuge, Y. (2010a). Optimum mix design of enhanced permeable concrete - An experimental investigation. Construction and Building Materials, 24(12), 2664– 2671. https://doi.org/10.1016/j.conbuildmat.2010.04.057
dc.relationLian, C., & Zhuge, Y. (2010b). Optimum mix design of enhanced permeable concrete - An experimental investigation. Construction and Building Materials, 24(12), 2664.
dc.relationLian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength for porous concrete. Construction and Building Materials, 25(11), 4294– 4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005
dc.relationLiu, T., Wang, Z., Zou, D., Zhou, A., & Du, J. (2019). Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method. Cement and Concrete Research, 122(May), 72–82. https://doi.org/10.1016/j.cemconres.2019.05.004
dc.relationLópez-Carrasquillo, V., & Hwang, S. (2017). Comparative assessment of pervious concrete mixtures containing fly ash and nanomaterials for compressive strength, physical durability, permeability, water quality performance and production cost. Construction and Building Materials, 139, 148–158. https://doi.org/10.1016/j.conbuildmat.2017.02.052
dc.relationLopez, R., Pialarissi, S., Pujadas, P., & Aguado, A. (2017). Innovaciones y avances en el ambito de los pavimentos urbanos para smart cities. 8.
dc.relationLu, G., Renken, L., Li, T., Wang, D., Li, H., & Oeser, M. (2019). Experimental study on the polyurethane-bound pervious mixtures in the application of permeable pavements. Construction and Building Materials, 202, 838–850. https://doi.org/10.1016/j.conbuildmat.2019.01.051
dc.relationMaguesvari, M. U., & Narasimha, V. L. (2013). Studies on Characterization of Pervious Concrete for Pavement Applications. Procedia - Social and Behavioral Sciences, 104, 198–207. https://doi.org/10.1016/j.sbspro.2013.11.112
dc.relationMeddah, M. S., & Hago, A. W. (2017). ScienceDirect Effect of granular fraction combinations on pervious concrete performance. Materials Today: Proceedings, 4(9), 9700–9704. https://doi.org/10.1016/j.matpr.2017.06.250
dc.relationMeininger, R. C. (1988). Pervious Concrete lar Paving.
dc.relationMohammed, B. S., Liew, M. S., Alaloul, W. S., Khed, V. C., Hoong, C. Y., & Adamu, M. (2018). Properties of nano-silica modified pervious concrete. Case Studies in Construction Materials, 8(January), 409–422. https://doi.org/10.1016/j.cscm.2018.03.009
dc.relationNational Ready Mixed Concrete Association •. (n.d.). PIP 3 – Acceptance Testing of Pervious Concrete.
dc.relationNguyen, D. H., Sebaibi, N., Boutouil, M., Leleyter, L., & Baraud, F. (2014). A modified method for the design of pervious concrete mix. Construction and Building Materials, 73, 271–282. https://doi.org/10.1016/j.conbuildmat.2014.09.088
dc.relationPaul, T. D., Michael, L. L., David, A. J., Tennis, P. D., Leming, M. L., & Akers, D. J. (2004). Pervious Concrete Pavements : Vol. Portland C (Issue January 2004).
dc.relationPortland Cement Association. (2004). Diseño y Control de Mezclas de Diseño y Control de Mezclas de Concreto.
dc.relationRahman, S., Northmore, A. B., Henderson, V., & Tighe, S. L. (2015). Developing A Framework for Low-Volume Road Implementation of Pervious Concrete Pavements. International Journal of Transportation Science and Technology, 4(1), 77–91. https://doi.org/10.1260/2046-0430.4.1.77
dc.relationRangelov, M., Nassiri, S., Chen, Z., Russell, M., & Uhlmeyer, J. (2017). ScienceDirect Quality evaluation tests for pervious concrete pavements ’ placement. International Journal of Pavement Research and Technology, 10(3), 245–253. https://doi.org/10.1016/j.ijprt.2017.01.007
dc.relationRangelov, M., Nassiri, S., Haselbach, L., & Englund, K. (2016). Using carbon fiber composites for reinforcing pervious concrete. Construction and Building Materials, 126, 875–885. https://doi.org/10.1016/j.conbuildmat.2016.06.035
dc.relationRehder, B., Banh, K., & Neithalath, N. (2014). Fracture behavior of pervious concretes: The effects of pore structure and fibers. Engineering Fracture Mechanics, 118, 1– 16. https://doi.org/10.1016/j.engfracmech.2014.01.015
dc.relationRostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., & Abtahi, S. M. (2019). The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cement and Concrete Composites, 97(August 2018), 118–124. https://doi.org/10.1016/j.cemconcomp.2018.12.012
dc.relationSaadeh, S., Ralla, A., Al-Zubi, Y., Wu, R., & Harvey, J. (2019). Application of fully permeable pavements as a sustainable approach for mitigation of stormwater runoff. International Journal of Transportation Science and Technology, 8(4), 338–350. https://doi.org/10.1016/j.ijtst.2019.02.001
dc.relationSartipi, M., & Sartipi, F. (2019). Stormwater retention using pervious concrete pavement: Great Western Sydney case study. Case Studies in Construction Materials, 11, e00274. https://doi.org/10.1016/j.cscm.2019.e00274
dc.relationSchaefer, V. R., & Kevern, J. T. (2011). An Integrated Study of Pervious Concrete Mixture Design for Wearing Course Applications An Integrated Study of Pervious Concrete Mixture Design for Wearing.
dc.relationShu, X., Huang, B., Wu, H., Dong, Q., & Burdette, E. G. (2011). Performance comparison of laboratory and field produced pervious concrete mixtures. Construction and Building Materials, 25(8), 3187–3192. https://doi.org/10.1016/j.conbuildmat.2011.03.002
dc.relationSun, J. (2013). Strength criterion for ecological light porous concrete under multiaxial stress. Construction and Building Materials, 44, 663–670. https://doi.org/10.1016/j.conbuildmat.2013.03.062
dc.relationTabatabaeian, M., Khaloo, A., & Khaloo, H. (2019). An innovative high performance pervious concrete with polyester and epoxy resins. Construction and Building Materials, 228, 116820. https://doi.org/10.1016/j.conbuildmat.2019.116820
dc.relationTang, C. W., Cheng, C. K., & Tsai, C. Y. (2019). Mix design and mechanical properties of high-performance pervious concrete. Materials, 12(16). https://doi.org/10.3390/ma12162577
dc.relationTorres, A., Hu, J., & Ramos, A. (2015). The effect of the cementitious paste thickness on the performance of pervious concrete. Construction and Building Materials, 95, 850–859. https://doi.org/10.1016/j.conbuildmat.2015.07.187
dc.relationWang, D., Ju, Y., Shen, H., & Xu, L. (2019). Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Materials, 197, 464–473. https://doi.org/10.1016/j.conbuildmat.2018.11.181
dc.relationWang, H., Li, H., Liang, X., Zhou, H., Xie, N., & Dai, Z. (2019). Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Construction and Building Materials, 202, 387–395. https://doi.org/10.1016/j.conbuildmat.2019.01.044
dc.relationXie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. Journal of Cleaner Production, 210, 1605– 1621. https://doi.org/10.1016/j.jclepro.2018.11.134
dc.relationXu, G., Shen, W., Huo, X., Yang, Z., Wang, J., Zhang, W., & Ji, X. (2018). Investigation on the properties of porous concrete as road base material. Construction and Building Materials, 158, 141–148. https://doi.org/10.1016/j.conbuildmat.2017.09.151
dc.relationZhang, A., Li, Z., Zhou, M., Cao, Y., Jiang, B., & Qiu, S. (2011). Research on permeable concrete interface structure. 2011 International Conference on Electric Technology and Civil Engineering, ICETCE 2011 - Proceedings, 3410–3412. https://doi.org/10.1109/ICETCE.2011.5775780
dc.relationZhong, R., & Wille, K. (2015). Material design and characterization of high performance pervious concrete. Construction and Building Materials, 98, 51–60. https://doi.org/10.1016/j.conbuildmat.2015.08.027
dc.relationZhong, R., & Wille, K. (2016). Compression response of normal and high strength pervious concrete. Construction and Building Materials, 109, 177–187. https://doi.org/10.1016/j.conbuildmat.2016.01.051
dc.relationZhong, R., & Wille, K. (2018). Influence of matrix and pore system characteristics on the durability of pervious concrete. Construction and Building Materials, 162, 132–141. https://doi.org/10.1016/j.conbuildmat.2017.11.175
dc.relationZhou, H., Li, H., Abdelhady, A., Liang, X., Wang, H., & Yang, B. (2019). Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning. Construction and Building Materials, 212, 130– 139. https://doi.org/10.1016/j.conbuildmat.2019.03.310
dc.relationZhou, J., Zheng, M., Wang, Q., Yang, J., & Lin, T. (2016). Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Construction and Building Materials, 124, 897–905. https://doi.org/10.1016/j.conbuildmat.2016.07.136
dc.relationZhu, H., Yu, M., Zhu, J., Lu, H., & Cao, R. (2019). Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International Journal of Transportation Science and Technology, 8(4), 373–382. https://doi.org/10.1016/j.ijtst.2018.12.001
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsLicencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2021 Universidad Pedagógica y Tecnológica de Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleComportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución