dc.contributorVera López, Enrique (Director de tesis)
dc.contributorGómez Cuaspud, Jairo Alberto (Director de tesis)
dc.creatorTorres Barahona, Edgar Absalón
dc.date.accessioned2021-08-20T16:42:58Z
dc.date.accessioned2022-09-27T13:55:25Z
dc.date.available2021-08-20T16:42:58Z
dc.date.available2022-09-27T13:55:25Z
dc.date.created2021-08-20T16:42:58Z
dc.date.issued2019
dc.identifierTorres Barahona, E. A. (2019). Desarrollo de prototipos de dispositivos de conversión fotovoltaica con base en CZTS sobre sustratos cerámicos. (Tesis doctoral). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/3695
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/3695
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3601837
dc.description.abstractSpa: Este trabajo presenta el desarrollo de dispositivos de película delgada con base en kesterita sobre sustratos cerámicos; se analizan diferentes procesos para la obtención de películas delgadas tipo CZTS y CZTSe mediante técnicas sin vacío y la estrategia para minimizar los defectos en la capa depositada, evaluando a partir de los resultados mediante diferentes técnicas de caracterización. Con los resultados analizados se definen los métodos de síntesis para la implementación de dispositivos de células solares, los que finalmente son evaluados eléctricamente. En la primera parte se presentan algunos referentes teóricos relacionados con los conceptos de energía, energía solar fotovoltaica, los avances tecnológicos en relación con células solares fotovoltaicas y un análisis de kesterita como material absorbente de energía solar. También se hace una presentación de la estructura básica de una célula, procedimientos de fabricación, sustratos cerámicos y técnicas de caracterización utilizadas. Posteriormente se muestra el trabajo desarrollado en relación con los sustratos cerámicos, los métodos para la síntesis de kesterita, el ensamble de células solares de película delgada con base en los resultados parciales encontrados y la caracterización eléctrica de los dispositivos implementados. Finalmente se plantean las conclusiones que se desprenden de los resultados obtenidos.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.publisherFacultad Ingeniería
dc.publisherTunja
dc.publisherDoctorado en Ingeniería y Ciencia de los Materiales
dc.relationD. Cahen y D. S. Ginley, Fundamentals of Materials for Energy and Environmental Sustainability. New York: Cambridge University Press, 2012
dc.relationOPEC, Annual Report 2018. Austria: Medienfabrik Graz GmbH, 2019.
dc.relationA. Caillé Chair, M. Al-Moneef, F. Barnés de Castro, A. Bundgaard-Jensen, E. Velasco Garcia, y R. Wood, Deciding the Future: Energy Policy Scenarios to 2050, London: World Energy Council, 2007.
dc.relationD. Kweku et al., “Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming”, J. Sci. Res. Reports, vol. 17, no. 6, pp. 1–9, 2018.
dc.relationInternational Energy Agency. (2019, May 10). World Energy Outlook 2018. Available: Website: www.iea.org.
dc.relationE. V. M. Papadopoulou, Energy Management in Buildings Using Photovoltaics, vol. 70. New York: Springer, 2012.
dc.relationIRENA, Renewable Power Generation Costs in 2018. International Renewable Energy Agency, Abu Dhabi. 2019.
dc.relationG. L. Agawane et al., “Fabrication of 3.01% power conversion efficient highquality CZTS thin film solar cells by a green and simple sol-gel technique,” Mater. Lett., vol. 158, pp. 58–61, 2015.
dc.relationBP. BP statistical review of world energy. 2019 (2019-6-20), https:// www.bp.com/content/ dam/bp/business-sites/en/global/corporate/dfs/ energyeconomics/ statistical-review/bp-stats-review-2019-full-report.pdf
dc.relationP. Söderholm, R. Hildingsson, B. Johansson, J. Khan, and F. Wilhelmsson, “Governing the transition to low-carbon futures: A critical survey of energy scenarios for 2050,” Futures, vol. 43, no. 10, pp. 1105–1116, 2011.
dc.relationE. V. M. Papadopoulou, Photovoltaic Industrial Systems: An Environmental Approach. Greece: Springer, 2011.
dc.relationG. Larramona et al, “Fine‐Tuning the Sn Content in CZTSSe Thin Films to Achieve 10.8% Solar Cell,” Advanced Energy Materials, vol. 5 no. 24, 2015.
dc.relationY. S. Lee et al., “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater., vol. 5, no. 7, pp. 2–5, 2015.
dc.relationK. Sun et al., “Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1- xCdxS Buffer Layer,” Adv. Energy Mater., vol. 6, no. 12, p. 1600046, 2016.
dc.relationC. Yan et al., “Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment,” Nat. Energy, vol. 3, no. 9, pp. 764–772, 2018.
dc.relationC. Andres, S. G. Haass, Y. E. Romanyuk y Laboratory, “9.4% efficient Cu2ZnSnSe4 solar cells from co-sputtered elemental metal precursor and rapid thermal annealing,” Thin Solid Films, vol. 633, pp. 141–145, 2017.
dc.relationT. Taskesen et al., “Device Characteristics of an 11.4% CZTSe Solar Cell Fabricated from Sputtered Precursors,” Adv. Energy Mater., vol. 8, no. 16, pp. 1–6, 2018.
dc.relationB. Duan et al., “Highly efficient solution-processed CZTSSe solar cells based on a convenient sodium-incorporated post-treatment method,” J. Energy Chem., vol. 40, pp. 196–203, 2020.
dc.relationK. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, “6 Studies of spin-coated polymer films,” Annu. Reports Prog. Chem. - Sect. C, vol. 101, pp. 174–201, 2005.
dc.relationN. Demirci Sankir Y M. Sankir, Printable Solar Cells. USA: Wiley, 2017.
dc.relationT. Schneller, R- Waser, M, Kosec y D. Payne, Chemical Solution Deposition of Functional Oxide Thin Films. Illinois: Springer-Verlag Wien, 2013.
dc.relationR. W. Bentley, Introduction to Peak Oil, vol. 34. UK: Springer, 2016.
dc.relationJ. Tauc, R. Grigorovici, A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi, vol. 15, pp. 627– 637, 1966.
dc.relationE. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag., vol. 22, no. 179, pp. 903–922, 1970.
dc.relationW. Li, J. Chen, C. Yan, and X. Hao, “The effect of ZnS segregation on Zn-rich CZTS thin film solar cells,” J. Alloys Compd., vol. 632, pp. 178–184, 2015.
dc.relationJ. J. Scragg et al, “Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells,” Prog. Photovoltaics, vol. 112, pp. 10–17, 2012.
dc.relationV. T. Tiong, J. Bell, and H. Wang, “One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals - a hydrothermal approach,” Beilstein J. Nanotechnol., vol. 5, no. 1, pp. 438–446, 2014.
dc.relationS. A. Vanalakar et al., “Simplistic toxic to non-toxic hydrothermal route to synthesize Cu2ZnSnS4 nanoparticles for solar cell applications,” Sol. Energy, vol. 122, pp. 1146–1153, 2015.
dc.relationS. A. Vanalakar, G. L. Agwane, M. G. Gang, P. S. Patil, J. H. Kim, and J. Y. Kim, “A mild hydrothermal route to synthesis of CZTS nanoparticle inks for solar cell applications,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 12, no. 6, pp. 500–503, 2015.
dc.relationS. J. Lin, J. M. Ting, and Y. S. Fu, “Single-phase, high-purity Cu2ZnSnS4 nanoparticles via a hydrothermal route,” Ceram. Int., vol. 44, no. 4, pp. 4450– 4456, 2018.
dc.relationY. Xia, Z. Chen, Z. Zhang, X. Fang, and G. Liang, “A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 1–7, 2014.
dc.relationJ.M. Smith, H. C. Van Ness, M. M. Abbott, Introducción a la Termodinámica En Ingeniería Química. 5 ed. México: McGRAW-HILL, 1997
dc.relationS. Chu y A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, 2012.
dc.relationI. Calvet, E. Barrachina, R. Martí, D. Fraga, T. Stoyanova Lyubenova, and J. B. Carda, “Development of photovoltaic ceramic tile based on CZTSSe absorber,” Mater. Lett., vol. 161, pp. 636–639, 2015.
dc.relationH. Katagiri et al., “Development of CZTS-based thin film solar cells,” Thin Solid Films, vol. 517, no. 7, pp. 2455–2460, 2009.
dc.relationC. Cerámicos, R. Sociales, E. Y. Medioambientales, and E. N. El, “Castellón (españa),” 1988.
dc.relationH. El-Didamony, E. El-Fadaly, A. A. Amer, and I. H. Abazeed, “Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes,” Boletín la Soc. Española Cerámica y Vidr., pp. 1–13, 2019.
dc.relationI. Becerril-romero et al., “Vitreous enamel as sodium source for efficient kesterite solar cells on commercial ceramic tiles,” vol. 154, pp. 11–17, 2016.
dc.relationH. Águas et al., “Silicon thin film solar cells on commercial tiles,” Energy Environ. Sci., vol. 4, no. 11, pp. 4620–4632, 2011.
dc.relationA. Bosio, D. Menossi, G. Rosa, and N. Romeo, “Key developments in CIGS thin film solar cells on ceramic substrates,” Cryst. Res. Technol., vol. 49, no. 8, pp. 620–627, 2014.
dc.relationD. Fraga, T. Stoyanova Lyubenova, R. Martí, I. Calvet, E. Barrachina y J.B. Carda 1 “Effect of alkali doping on CIGS photovoltaic ceramic tiles,” Sol. Energy, vol. 147, pp. 1–7, 2017
dc.relationC. Lázaro, V. Ramón Trilles, F. Gómez, S. Allepuz, D. Fraga, and J. B. Carda, “Incorporación de residuos derivados de la fabricación cerámica y del vidrio reciclado en el proceso cerámico integral,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 51, no. 2, pp. 139–144, 2012.
dc.relationT. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, and H. Ogawa, “Fabrication of Cu2ZnSnS4 thin films by co-evaporation,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 3, no. 8, pp. 2844–2847, 2006
dc.relationP. A. Owusu y S. Asumadu-Sarkodie, “A review of renewable energy sources, sustainability issues and climate change mitigation,” Cogent Eng., vol. 3, no. 1, pp. 1–14, 2016.
dc.relationS. A. Bashkirov, U. S. Hekkel, M. S. Tivanov, and A. M. Saad, “Cu2ZnSnS4 thin films by sulfurization in melted sulfur,” Mater. Lett., vol. 220, pp. 126–128, 2018
dc.relationD. Fan, J. Zhang, X. Wang, M. Xu, and S. Xu, “Three-step process improves crystal quality of Cu2ZnSnS4 absorber layer and efficiency of solar cell,” Cryst. Res. Technol., vol. 50, no. 8, pp. 613–620, 2015.
dc.relationB. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. Chey y S. Guha “Thin film solar cell with 8.4% power conversion.pdf,” Progress in Photovoltaics: Research and Applications. pp. 1174, 2011.
dc.relationA. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,” J. Appl. Phys., vol. 111, no. 8, 2012
dc.relationK. Wang et al., “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett., vol. 97, no. 14, pp. 8–11, 2010
dc.relationP. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films, vol. 517, no. 7, pp. 2519–2523, 2009
dc.relationH. Chen et al., “Electrodeposited CZTS solar cells from Reline electrolyte,” Green Chem., vol. 16, no. 8, pp. 3841–3845, 2014.
dc.relationA.-J. Cheng, M. Manno, A. Khare, C. Leighton, S. A. Campbell, and E. S. Aydil, “ Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy ,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 29, no. 5, p. 051203, 2011.
dc.relationM. A. Mahmoud, “Adsorption of U (VI) ions from aqueous solution using silicon dioxide nanopowder,” J. Saudi Chem. Soc., vol. 22, no. 2, pp. 229– 238, 2018.
dc.relationC. Ai, Y. Xiao, W. Wen, and L. Yuan, “Large scale and environmentally friendly preparation of micro-submicron spherical silica and their surface effect in resin materials,” Powder Technol., vol. 210, no. 3, pp. 323–327, 2011
dc.relationS. Vaclav, Energy in nature and society: general energetics of complex systems. MIT press, 2008.
dc.relationS. Kim and J. Kim, “Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell,” Thin Solid Films, vol. 547, pp. 178–180, 2013.
dc.relationT. Guo, Z. Yu, L. Liu, Y. Zhao, and Y. Zhang, “Effect of substrate and selenization temperature on the properties of RF sputtered CZTSe layer,” Vacuum, vol. 145, pp. 217–224, 2017.
dc.relationA. V. Stanchik et al., “Microstructure and Raman Scattering of Cu2ZnSnSe4 Thin Films Deposited onto Flexible Metal Substrates,” Semiconductors, vol. 52, no. 2, pp. 215–220, 2018.
dc.relationY. C. Lin, L. C. Wang, K. T. Liu, Y. R. Syu, and H. R. Hsu, “A comparative investigation of secondary phases and MoSe2 in Cu2ZnSnSe4 solar cells: Effect of Zn/Sn ratio,” J. Alloys Compd., vol. 743, pp. 249–257, 2018.
dc.relationE. Fairbrother et al., “Secondary phase formation in Zn-rich Cu2ZnSnSe4- based solar cells annealed in low pressure and temperature conditions,” Prog. Photovolt Res. Appl., vol. 22, no. January, pp. 479–487, 2014.
dc.relationG. Marcano et al., “Raman spectrum of monoclinic semiconductor Cu2SnSe3,” Solid State Commun., vol. 151, no. 1, pp. 84–86, 2011.
dc.relationH. hii, M.; Shibata, K.; Nozaki, “Anion Distributions and Phase Transitions in CuS1‐xSex (x = 0−1) Studied by Raman Spectroscopy,” J. Solid State Chem., vol. 105, p. 504−511, 1993.
dc.relationL. Yao et al., “A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure,” Sol. Energy Mater. Sol. Cells, vol. 159, pp. 318–324, 2017
dc.relationI. Calvet, E. Barrachina, D. Fraga, T. S. Lyubenova, and J. Carda, “Study of CZTSSe growth by chemical routeonto alternative substrates for architectural integration,” Proc. 2018 6th Int. Renew. Sustain. Energy Conf. IRSEC 2018, pp. 1–6, 2019.
dc.relationX. Fontané et al., “Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4,” J. Alloys Compd., vol. 539, pp. 190–194, 2012.
dc.relationK. Ito, Copper Zinc Tin Sulfide−Based Thin−Film Solar Cells, United Kingdom: John Wiley & Sons. 2015
dc.relationX. Fontań et al., “In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett., vol. 98, no. 18, pp. 2011–2014, 2011.
dc.relationH. Ferhati and F. Djeffal, “Graded band-gap engineering for increased efficiency in CZTS solar cells,” Opt. Mater. (Amst)., vol. 76, pp. 393–399, 2018.
dc.relationB. Munir, B. E. Prastyo, D. M. Nurjaya, E. Y. Muslih, and S. K. Alfauzan, “High crystalline Cu2ZnSnS4 semiconductor prepared from low toxicity ethanolbased precursors,” AIP Conf. Proc., vol. 1788, 2017.
dc.relationY. Wei et al., “An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization,” Sol. Energy, vol. 164, no. November 2017, pp. 58–64, 2018.
dc.relationE. Ramirez, A. A. Ramirez, M. F. Hurtado, and G. Gordillo, “Microstructural and optical characterization of CZTS thin films deposited in one step by spray pyrolysis,” IEEE 42nd Photovolt. Spec. Conf. PVSC 2015, pp. 1–4, 2015.
dc.relationS. E. Liu, Y. H. Lin, and H. Y. Huang, “Preparation of Cu2ZnSnSe4 absorber layer by nonvacuum method,” Jpn. J. Appl. Phys., vol. 52, no. 12, 2013.
dc.relationR. Aruna-Devi, M. Latha, S. Velumani, J. Santoyo-Salazar, and J. SantosCruz, “Telescoping synthesis and goldilocks of CZTS nanocrystals,” Mater. Res. Bull., vol. 111, pp. 342–349, 2019.
dc.relationB. Long, S. Cheng, D. Ye, C. Yue, and J. Liao, “Mechanistic aspects of preheating effects of precursors on characteristics of Cu2ZnSnS4 (CZTS) thin films and solar cells,” Mater. Res. Bull., vol. 115, pp. 182–190, 2019.
dc.relationT. H. Tran, T. H. Pham, C. D. Sai, T. T. Nguyen, and V. T. Nguyen, “Study phase evolution of hydrothermally synthesized Cu2ZnSnS4 nanocrystals by Raman spectroscopy,” Nano-Structures and Nano-Objects, vol. 18, p. 100273, 2019.
dc.relationX. Zhang, E. Fu, Y. Wang, and C. Zhang, “Fabrication of Cu2ZnSnS4 (CZTS) Nanoparticle Inks for Growth of CZTS Films for Solar Cells,” Nanomaterials, vol. 9, no. 3, p. 336, 2019.
dc.relationK. Lovegrove, W, Stein, Concentrating solar power technology: Principles, developments and applications. Cambridge: Woodhead Publishing Limited, 2012.
dc.relationÖ. Demircioglu et al., “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys., vol. 118, no. 18, pp. 1–8, 2015.
dc.relationM. Dimitrievska et al., “Defect characterisation in Cu2ZnSnSe4 kesterites via resonance Raman spectroscopy and the impact on optoelectronic solar cell properties,” J. Mater. Chem. A, 2019.
dc.relationR. Becerra, “Síntesis y caracterización de depositadas por CBD , asistida con membranas de difusión Síntesis y caracterización de películas delgadas de Cu2ZnSnS4 membrana de difusión” teisis magister, Universidad Nacional de Colombia, 2016
dc.relationG. Rey et al., “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett., vol. 105, no. 11, pp. 0–4, 2014.
dc.relationS. Zhuk, A. Kushwaha, T. K. S. Wong, S. Masudy-Panah, A. Smirnov, and G. K. Dalapati, “Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance,” Sol. Energy Mater. Sol. Cells, vol. 171, no. May, pp. 239–252, 2017
dc.relationA. Fairbrother et al., “Development of a selective chemical Etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells,” J. Am. Chem. Soc., vol. 134, no. 19, pp. 8018–8021, 2012.
dc.relationT. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid. State. Electron., vol. 56, no. 1, pp. 175–178, 2011.
dc.relationT. P. Dhakal, C. Y. Peng, R. Reid Tobias, R. Dasharathy, and C. R. Westgate, “Characterization of a CZTS thin film solar cell grown by pulverizado catódico method,” Sol. Energy, vol. 100, pp. 23–30, 2014
dc.relationA. G. Komilov, “Influence of CdS Buffer Layer Thickness on the Photovoltaic Parameters of Solar Cells,” Appl. Sol. Energy, vol. 54, no. 5, pp. 308–309, 2018.
dc.relationF. A. Jhuma, M. Z. Shaily, and M. J. Rashid, “Towards high-efficiency CZTS solar cell through buffer layer optimization,” Mater. Renew. Sustain. Energy, vol. 8, no. 1, pp. 1–7, 2019
dc.relationIDEAM (2019, jun 20), Distribución Espacial y Temporal de la Irradiación Global Horizontal en Colombia. Disponible en: http://atlas.ideam.gov.co/ basefiles/ 1.Distribucion-espacial-y-temporal-de-la-Irradiacion-GlobalHorizontal-en-Colombia.pdf
dc.relationK. V Gunavathy, V. Parthibaraj, C. Rangasami, and K. Tamilarasan, “Prospects of alternate buffer layers for CZTS based thin films solar cells from Numerical Analysis – A Review,” South Asian J. Eng. Technol., vol. 2, no. 16, pp. 88–96, 2016.
dc.relationM. I. Hossain, P. Chelvanathan, M. M. Alam, M. Akhtaruzzaman, K. Sopian, and N. Amin, “Potential buffer layers for Cu2ZnSnS4 (CZTS) solar cells from numerical analysis,” CEAT 2013 - 2013 IEEE Conf. Clean Energy Technol., vol. 4, pp. 450–454, 2013.
dc.relationL. Vauche et al., “Detrimental effect of Sn-rich secondary phases on Cu2ZnSnSe4 based solar cells,” J. Renew. Sustain. Energy, vol. 8, no. 3, 2016.
dc.relationN. Vora et al., “Phase identification and control of thin films deposited by coevaporation of elemental Cu, Zn, Sn, and Se,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 5, p. 051201, 2012.
dc.relationS. Giraldo, M. Placidi, and E. Saucedo, 5 - Kesterite: New Progress Toward Earth-Abundant Thin-Film Photovoltaic. Elsevier Inc., 2019.
dc.relationF. E. Checa y O. E. D. La Cruz, “Potencial Natural para el Desarrollo Fotovoltaico en Colombia,” Libr. Editor. UNIMAR, pp. 52–59, 2015.
dc.relationIDEAM (2019, jun 20), Distribución espacial y temporal del Brillo Solar en Colombia,http://atlas.ideam.gov.co/basefiles/Distribucion-espacial-ytemporal-del-Brillo-Solar-en-Colombia.pdf
dc.relationD. J. Rodríguez, M. Ávila, J. A. Benítez, D. J. Rodríguez, M. Ávila, y J. A. Benítez, “Solar Radiation Atlas for the Region Cundiboyacense Colombia through Radiometric Data,” en 13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing? Santo Domingo, 2015
dc.relationH. D. Young, R. A. Freedman, y A. L. Ford, Física Universitaria Vol. 2 con física moderna, 12 ed. México: Addison-Wesley, 2009, pp 700-750
dc.relationJ. L. Gray, “The Physics of the Solar Cell,” en Handbook of Photovoltaic Science and Engineering, 2nd Ed.UK: Wiley. 2011, pp. 82-118
dc.relationT. Markvart, L. Castañer, y A. McEvoy, “Principles of Solar Cell Operation,” Pract. Handb. Photovoltaics, pp. 7–31, 2012
dc.relationS. S. Li, Semiconductor Physical Electronics. 2nd Ed. Florida: Springer, 2006.
dc.relationY. Xu, T. Gong, y J. N. Munday, “The generalized Shockley-Queisser limit for nanostructured solar cells,” Sci. Rep., vol. 5, p. 13536, 2015.
dc.relationJ. A. Kilner, S. J. Skinner, S. J. C. Irvine y P. P. Edwards, Functional materials for sustainable energy applications. Cambridge: Woodhead Publishing, 2012.
dc.relationS. Rühle, “Tabulated values of the Shockley-Queisser limit for single junction solar cells,” Sol. Energy, vol. 130, pp. 139–147, 2016.
dc.relationM. Jiang y X. Yan, “Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects,” en Solar Cells – Research And Application Perspectives, A. M. Acevedo. Croatia: InTech, 2013, pp. 107-143.
dc.relationX. Liu et al., “The current status and future prospects of kesterite solar cells: a brief review”, Prog. Photovoltaics, vol. 24, no. 6, pp. 879–898, 2016.
dc.relationM. S. Kumar, S. P. Madhusudanan, y S. K. Batabyal, “Substitution of Zn in Earth‐Abundant Cu2ZnSn(S,Se)4 based thin film solar cells – A status review”, Solar Energy Materials and Solar Cells, vol. 185. pp. 287–299, 2018.
dc.relationS. A. Khalate, R. S. Kate, y R. J. Deokate, “A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency,” Sol. Energy, vol. 169, pp. 616–633, 2018.
dc.relationA. K. Chilvery et al., “Perovskites: transforming photovoltaics, a mini-review,” J. Photonics Energy, vol. 5, no. 1, p. 057402, 2015.
dc.relationR. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology. Weinheim: WILEY-VCH, 2003.
dc.relationA. C. Lokhande et al., “Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review,” Solar Energy Materials and Solar Cells, vol. 153. Elsevier, pp. 84–107, 2016.
dc.relationW. Hoffmann, “Photovoltaics as a Major Contributorto the Future Global Energy NeEDX and a 100% Renewably Powered World” en Photovoltaics for Sustainable Electricity and Buildings, A. Sayigh. Brighton: Springer, 2017.
dc.relationA. A. Yaroshevsky, “Abundances of chemical elements in the Earth’s crust,” Geochemistry Int., vol. 44, no. 1, pp. 48–55, 2006.
dc.relationM. A. Green et al., “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics Res. Appl., vol. 27, no. 1, pp. 3–12, 2019
dc.relationW. A. Badawy, “A review on solar cells from Si-single crystals to porous materials and Quantum dots,” J. Adv. Res., vol. 6, no. 2, pp. 123–132, 2015
dc.relationVigilancer. (2019, abr 2) “Oportunidad: Análisis Competitivo Internacional Del Sector Cerámico. Disponible en: http://www.vigilancer.es/ noticias/ oportunidad-análisis-competitivo-internacional-del-sector-cerámico
dc.relationL. Baraldi, (2018, dic). “World production and consumption of ceramic tiles,” en Ceramics World Review, no.128. Didonible en: http://www.mecstudies.com/filealbum/740_0.pdf
dc.relationL. Baraldi, (2019, jul 10). “Italy and Spain: a European duopoly in the ceramic tile industry,” en Ceramics World Review, no.131. Didonible en: http://www.qualicer.org/recopilatorio/ponencias/pdfs/67%20PON%20ING.pdf
dc.relationJ. Llop, T. Stoyanova Lyubenova, E. Barrachina, M. D. Notari, I. Nebot, and J. B. Carda, “The ceramic industry in Spain: Challenges and opportunities in times of crisis,” CFI Ceram. Forum Int., vol. 91, no. 6–7, pp. 1–12, 2014.
dc.relationAsociación Española de Fabricantes de Azulejos y Pavimentos Cerámicos, “Las cifras del sector en 2018,” p. 1, 2018.
dc.relationI. Becerril-Romero et al., “Vitreous enamel as sodium source for efficient kesterite solar cells on commercial ceramic tiles,” Sol. Energy Mater. Sol. Cells, vol. 154, pp. 11–17, 2016.
dc.relationT. S. Lyubenova, D. Fraga, J. B. C. Castelló, V. Kozhukharov, and M. S. Machkova, “Multifunctional smart coatings on novel ceramics and glassceramic substrates in the context of the circular economy,” J. Chem. Technol. Metall., vol. 53, no. 6, pp. 1103–1116, 2018
dc.relationJ. Orozco-Messana, V. Donderis, J. Cembrero, M. A. Hernández-Fenollos, “Desarrollo de Dispositivos Fotovoltaicos de Bajo Coste Sobre Sustratos Cerámicos Comerciales”, Qualicer, pp. 95-102, 2008.
dc.relationI. Calvet, E. Barrachina, R. Martí, D. Fraga, T. S. Lyubenova, and J. B. Carda, “Synthesis, deposition and crystal growth of CZTS nanoparticles onto ceramic tiles,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 54, no. 5, pp. 175–180, 2015
dc.relationD. F. Chiva, “Estudio y desarrollo de nuevos sustratos cerámicos como soportes de células fotovoltaicas en base a capas de calcogenuros,” 2017.
dc.relationD. Fraga, T. Stoyanova Lyubenova, R. Martí, I. Calvet, E. Barrachina, and J. B. Carda, “Ecologic ceramic substrates for CIGS solar cells,” Ceram. Int., vol. 42, no. 6, pp. 7148–7154, 2016
dc.relationI. Fernández de Lucio, D. Gabaldón Estevan, y C. Gómez de Bareda Ferraz, “La Innovación en el Sector de Pavimentos y Revestimientos Cerámicos de la Comunidad Valenciana,” no. July 2014, 2005.
dc.relationL. Maturi and J. Adami, Building in Trentino Alto Photovoltaic (BIPV) Integrated Adige. Switzerland: Springer, 2018
dc.relationA. Luque y S. Hegedus, Handbook of Photovoltaic Science and Engineering. 2nd ed. UK: Wiley, 2003.
dc.relationC. J. Bartodziej, The concept Industry 4.0 An Empirical Analysis of Technologies and Applications in Production Logistics. Berlin: Springer, 2017.
dc.relationA. Gilchrist, Industry 4.0, The Industrial Internet of Things. Thailand: Apress, 2016.
dc.relationM. A. Cota, D. B. Figueroa, M.Sotelo, (2017, ene). Perovskitas y Kesteristas: El futuro para la fabricación de celdas solares de bajo costo. Disponible en: https://www.researchgate.net/publication/330546400_perovskitas_y_kesteri stas_el_futuro_para_la_fabricacion_de_celdas_solares_de_bajo_costo
dc.relationC. H. L. Goodman, “The prediction of semiconducting properties in inorganic compounds,” J. Phys. Chem. Solids, vol. 6, no. 4, pp. 305–314, 1958
dc.relationR. Nitsche, D. F. Sargent, and P. Wild, “Crystal Growth of Quaternary 122464 Chalcogenides by Iodine Vapor Transport,” J. Cryst. Growth, vol. 1, no. 1, pp. 52–53, 1967.
dc.relationC. R. A. Catlow et al., “Advances in computational studies of energy materials,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 368, no. 1923, pp. 3379–3456, 2010.
dc.relationM. Parans, W. Winnie y R. N. Bhattacharya, Semiconductor Materials for Solar Photovoltaic Cells. Switzerland: Springer, 2016.
dc.relationS. Schorr, “The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 6, pp. 1482– 1488, 2011
dc.relationH. Nozaki, T. Fukano, S. Ohta, Y. Seno, H. Katagiri, and K. Jimbo, “Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using Xray anomalous dispersion,” J. Alloys Compd., vol. 524, pp. 22–25, 2012.
dc.relationS. Chen, X. G. Gong, A. Walsh, and S. H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett., vol. 94, no. 4, pp. 25–27, 2009.
dc.relationW. Schfifer, R. Nitsche, and C. H. L. Goodman, “Tetrahedral Quaternary Chalcogenides,” Mat. Res. Bull, vol. 9, pp. 645–654, 1974.
dc.relationM. Dimitrievska, A. Fairbrother, E. Saucedo, A. Pérez-Rodríguez, and V. Izquierdo-Roca, “Influence of compositionally induced defects on the vibrational properties of device grade Cu2ZnSnSe4 absorbers for kesterite based solar cells,” Appl. Phys. Lett., vol. 106, no. 7, 2015.
dc.relationM. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, and A. Pérez-Rodríguez, “Polarized Raman scattering analysis of Cu2ZnSnSe4 and Cu2ZnGeSe4 single crystals,” J. Appl. Phys., vol. 114, no. 19, p. 193514, 2013
dc.relationA. Khare, B. Himmetoglu, M. Cococcioni, and E. S. Aydil, “First principles calculation of the electronic properties and lattice dynamics of Cu2ZnSn(S1- xSex)4,” J. Appl. Phys., vol. 111, no. 12, 2012
dc.relationX. Wang, Z. Sun, C. Shao, D. M. Boye, and J. Zhao, “A facile and general approach to polynary semiconductor nanocrystals via a modified two-phase method,” Nanotechnology, vol. 22, no. 24, 2011.
dc.relationA. Wangperawong, J. S. King, S. M. Herron, B. P. Tran, K. Pangan-Okimoto, and S. F. Bent, “Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers,” Thin Solid Films, vol. 519, no. 8, pp. 2488–2492, 2011.
dc.relationS. ADACHI, Earth-Abundant Materials for Solar Cells, UK: Wiley, 2015. [75] M. Altosaar et al., “Cu2Zn1-xCdxSn(Se1- y Sy)4 solid solutions as absorber materials for solar cells,” Phys. Status Solidi, vol. 205, no. 1, pp. 167–170, 2008.
dc.relation.M. Guc et al., “Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals,” Sci. Rep., vol. 6, no. January, pp. 1–7, 2016.
dc.relationS. Chen, X. G. Gong, A. Walsh, and S. H. Wei, “Defect physics of the kesterite thin-film solar cell absorber Cu2 ZnSnS4,” Appl. Phys. Lett., vol. 96, no. 2, pp. 4–7, 2010.
dc.relationA. Morales-Acevedo, Solar Cells - Research y Application Perspectives. Croatia: InTech, 2013
dc.relationK. Ito, Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, UK: Wiley, 2015.
dc.relationS. Chen, J. H. Yang, X. G. Gong, A. Walsh, and S. H. Wei, “Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 24, 2010.
dc.relationS. Chen, A. Walsh, X. G. Gong, and S. H. Wei, “Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers,” Adv. Mater., vol. 25, no. 11, pp. 1522–1539, 2013.
dc.relationT. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanaoi, and H. Katagiri, “Investigation of Cu2ZnSnS4-based thin film solar cells using abundant materials,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 44, no. 1 B, pp. 783–787, 2005.
dc.relationY. Zhang, Y. Sun, H. Wang, and H. Yan, “A facile non-vacuum-based Cu2ZnSnSe4 superstrate solar cell with 2.44% device efficiency,” Phys. Status Solidi Appl. Mater. Sci., vol. 213, no. 5, pp. 1324–1328, 2016.
dc.relationI. Calvet, E. Barrachina, R. Martí, D. Fraga, T. Stoyanova Lyubenova, and J. B. Carda, “Development of photovoltaic ceramic tile based on CZTSSe absorber,” Mater. Lett., vol. 161, pp. 636–639, 2015.
dc.relationC. M. Fella, A. R. Uhl, Y. E. Romanyuk, and A. N. Tiwari, “Cu2ZnSnSe4 absorbers processed from solution deposited metal salt precursors under different selenization conditions,” Phys. Status Solidi Appl. Mater. Sci., vol. 209, no. 6, pp. 1043–1048, 2012.
dc.relationJ. Just, C. M. Sutter-Fella, D. Lützenkirchen-Hecht, R. Frahm, S. Schorr, and T. Unold, “Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films,” Phys. Chem. Chem. Phys., vol. 18, no. 23, pp. 15988–15994, 2016.
dc.relationS. Temgoua, R. Bodeux, N. Naghavi, and S. Delbos, “Effects of SnSe2 secondary phases on the efficiency of Cu2ZnSn(Sx,Se1−x)4 based solar cells,” Thin Solid Films, vol. 582, pp. 215–219, 2015
dc.relationM. Thesis, “INVESTIGATION OF MORPHOLOGY AND COMPOSITION OF Cu2ZnSnS4 THIN FILMS PREPARED BY PULSED LASER DEPOSITION,” 2017
dc.relationP. M. Martin, Handbook of Depositions Tecnologies for film and coating. UK: Elsevier, 2010.
dc.relationD. Depla, S. Mahieu, y J. E. Greene, “Sputter Deposition Process”. Ghent University, vol. 281, pp. 1–36.
dc.relationW. Wang et al., “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater., vol. 4, no. 7, pp. 1–5, 2014.
dc.relationH. Li, Y. Mai, C. Liu, J. Fan, and R. Chen, “Efficiency enhancement of Cu 2 ZnSnS4 solar cells via surface treatment engineering,” R. Soc. Open Sci., vol. 5, no. 1, p. 171163, 2018
dc.relationW. Ki and H. W. Hillhouse, “Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent,” Adv. Energy Mater., vol. 1, no. 5, pp. 732–735, 2011.
dc.relationH. Xin, J. K. Katahara, I. L. Braly, and H. W. Hillhouse, “8% Efficient Cu2ZnSn(S,Se)4 solar cells from redox equilibrated simple precursors in DMSO,” Adv. Energy Mater., vol. 4, no. 11, pp. 1–5, 2014.
dc.relationF. Liu et al., “Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol−Gel and Selenization Process,” ACS Appl. Mater. Interfaces, vol. 7, no. 26, pp. 14376–14383, 2015.
dc.relationV. Tunuguntla et al., “A nontoxic solvent based sol-gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells,” J. Mater. Chem. A, vol. 3, no. 29, pp. 15324–15330, 2015.
dc.relationK. Kim et al., “Influence of precursor type on non-toxic hybrid inks for highefficiency Cu2ZnSnS4 thin-film solar cells,” Green Chem., vol. 16, no. 9, pp. 4323–4332, 2014.
dc.relationJ. V. Gohel, “Effect of Type of Solvent on the Sol-Gel Spin Coated CZTS Thin Films,” Phys. Astron. Int. J., vol. 1, no. 4, pp. 1–5, 2018
dc.relationW. Zhao, G. Wang, Q. Tian, Y. Yang, L. Huang, and D. Pan, “Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source,” ACS Appl. Mater. Interfaces, vol. 6, no. 15, pp. 12650–12655, 2014.
dc.relationG. Larramona et al. “8.6% Efficient CZTSSe Solar Cells Sprayed from Water−Ethanol CZTS,” J. Phys. Chem. Lett. vol. 5, pp. 3763−3767, 2014
dc.relationG. Wang et al., “Fabrication of Cu2ZnSn(S,Se)4 Photovoltaic Device by a LowToxic Ethanol Solution Process.,” ACS Appl. Mater. Interfaces, pp. 2–7, 2013.
dc.relationD. B. Khadka, S. Y. Kim, and J. H. Kim, “A Nonvacuum Approach for Fabrication of Cu2ZnSnSe4/In2S3 Thin Film Solar Cell and Optoelectronic Characterization,” J. Phys. Chem. C, vol. 119, pp. 12226–12235, 2015.
dc.relationK. Woo et al., “Non-toxic ethanol based particulate inks for low temperature processed Cu2ZnSn(S,Se)4 solar cells without S/Se treatment,” Sol. Energy Mater. Sol. Cells, vol. 128, pp. 362–368, 2014.
dc.relationet al. Eguchi, T., “‘Cu2ZnSnS4 solar cells with 7.6% efficiency.’ Technical Digest,” 21st Int. Photovolt. Sci. Eng. Conf. 2011, p. 2011, 2011.
dc.relationS. Tajima et al., “Atom-probe tomographic study of interfaces of Cu2ZnSnS4 photovoltaic cells,” Appl. Phys. Lett., vol. 105, no. 9, 2014.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDesarrollo de prototipos de dispositivos de conversión fotovoltaica con base en CZTS sobre sustratos cerámicos
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución