Tesis
Identidades polinomiais graduadas de algumas álgebras sobre um domínio de integridade
Fecha
2014-04-25Registro en:
FONSECA, Luís Felipe Gonçalves. Identidades polinomiais graduadas de algumas álgebras sobre um domínio de integridade. 2013. xiv, 58 f., il. Tese (Doutorado em Matemática)— Universidade de Brasília, Brasília, 2013.
Autor
Fonseca, Luís Felipe Gonçalves
Institución
Resumen
Sejam K um domínio de integridade infinito e Mn(K) a álgebra das matrizes n x n sobre K. Os objetivos da primeira parte desta tese serão:• Encontrar uma base para as identidades Z-graduadas de Mn(K); • Encontrar uma base para as identidades Zn-graduadas de Mn(K); • Encontrar uma base para as identidades graduadas de Mn(K) com uma graduação elementar cuja componente neutra coincide com a subálgebra das matrizes diagonais; • Descrever as identidades graduadas de Mn(K) equipada com uma graduação induzida das matrizes elementares; • Descrever os polinômios centrais Zp-graduados de Mp(K) quando p é um número primo; • Descrever os polinômios centrais Z-graduados de Mn(K). Com exceção do quarto item, todos os resultados listados acima têm versões conhecidas quando K é um corpo infinito; veja: [2],[3],[8] e [38]. Sejam K um corpo infinito de característica p > 2 e E a álgebra de Grassmann unitária gerada por um espaço vetorial de dimensão infinita V sobre K. Na segunda parte desta tese, nós descreveremos as identidades polinomiais Z2-graduadas de E para qualquer graduação em que uma base de V é homogênea com relação a essa graduação. _______________________________________________________________________________________ ABSTRACT Let K be an infinite integral domain and Mn(K) be the algebra of all n x n matrices over K. This thesis aims for the following goals:• Find a basis for the Z-graded identities of Mn(K);• Find a basis for the Zn-graded identities of Mn(K); • Find a basis for the graded identities for elementary grading in Mn(K) when the neutral component and diagonal components coincide; •Describe the matrix units-graded identities of Mn(K); • Describe the Zp-graded central polynomials of Mp(K) when p is a prime number; • Describe the Z-graded central polynomials of Mn(K). Except for the fourth item, all results listed above have known version when K is an infinite field; see [2],[3],[8], and [38]. Let K be a infinite field of characteristic p > 2 and let E be the unitary Grassmann algebra generated by an infinite dimensional vector space V over K. In the second part of this thesis, we found a basis of the Z2-graded polynomial identities for any non-trivial Z2-grading such that a basis of V is homogeneous in this grading.