dc.contributorSánchez Muñoz, Juan Armando
dc.contributorLaboratorio de Biología Molecular Marina - BIOMMAR
dc.creatorNavia Álvarez, Laura Carolina
dc.date.accessioned2022-06-06T14:22:13Z
dc.date.available2022-06-06T14:22:13Z
dc.date.created2022-06-06T14:22:13Z
dc.date.issued2022-06-03
dc.identifierhttp://hdl.handle.net/1992/57702
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractOstreobium es un alga euendolítica bioerosionadora que se asocia a sustratos calcáreos tanto vivos como muertos y es un importante productor primario. En específico, se ha demostrado que Ostreobium puede ser comensalista de corales al traslocar fotosintatos especialmente en eventos de blanqueamiento coralino. En este estudio, a partir de muestras de roca colectadas a 10 y 15 metros de profundidad se realizó una extracción de ADN, PCR, secuenciación Sanger, análisis bioinformático y filogenético para determinar la similitud de estas muestras con muestras recolectadas por González-Zapata et al. (2018) en Agaricia undata. Se encontró una clara diferenciación de las muestras de sustrato rocoso con respecto a las de coral lo cual es consistente con la estructuración geográfica por gradientes de profundidad previamente reportada para esta alga. Además, estas diferencias podrían deberse a las diferencias que representan ambos microhábitats y sus roles ecológicos en diferentes sustratos.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherBiología
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationBenchling. (2022). https://benchling.com
dc.relationCarreiro-Silva, M., McClanahan, T. R., & Kiene, W. E. (2009). Effects of inorganic nutrients and organic matter on microbial euendolithic community composition and microbioerosion rates. Marine ecology progress series, 392, 1-15.
dc.relationCremen, M. C. M., Huisman, J. M., Marcelino, V. R., & Verbruggen, H. (2016). Taxonomic revision of Halimeda (Bryopsidales, Chlorophyta) in south-western Australia. Australian Systematic Botany, 29(1), 41-54.
dc.relationDel Campo, J., Pombert, J.-F., lapeta, J., Larkum, A., & Keeling, P. J. (2017). The other coral symbiont: Ostreobium diversity and distribution. The ISME journal, 11(1), 296-299.
dc.relationDutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., & Berman-Frank, I. (2015). Impact of ocean acidification on the structure of future phytoplankton communities. Nature Climate Change, 5(11), 1002-1006.
dc.relationEdler, D., Klein, J., Antonelli, A., & Silvestro, D. (2021). raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12(2), 373-377.
dc.relationFine, M., & Loya, Y. (2002). Endolithic algae: An alternative source of photoassimilates during coral bleaching. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1497), 1205-1210.
dc.relationFine, M., Roff, G., Ainsworth, T., & Hoegh-Guldberg, O. (2006). Phototrophic microendoliths bloom during coral white syndrome. Coral reefs, 25(4), 577-581.
dc.relationGaylord, B., Kroeker, K. J., Sunday, J. M., Anderson, K. M., Barry, J. P., Brown, N. E., Connell, S. D., Dupont, S., Fabricius, K. E., & Hall-Spencer, J. M. (2015). Ocean acidification through the lens of ecological theory. Ecology, 96(1), 3-15.
dc.relationGolubic, S., Friedmann, E. I., & Schneider, J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Research, 51(2), 475-478.
dc.relationGonzalez-Zapata, F. L., Gómez-Osorio, S., & Sánchez, J. A. (2018). Conspicuous endolithic algal associations in a mesophotic reef-building coral. Coral Reefs, 37(3), 705-709.
dc.relationGutner-Hoch, E., & Fine, M. (2011). Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral reefs, 30(3), 643-650.
dc.relationIha, C., Dougan, K. E., Varela, J. A., Avila, V., Jackson, C. J., Bogaert, K. A., Chen, Y., Judd, L. M., Wick, R., & Holt, K. E. (2021). Genomic adaptations to an endolithic lifestyle in the coral-associated alga Ostreobium. Current Biology, 31(7), 1393-1402. e5.
dc.relationKearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., & Duran, C. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649.
dc.relationKuhn, T. S., Mooers, A. Ø., & Thomas, G. H. (2011). A simple polytomy resolver for dated phylogenies. Methods in Ecology and Evolution, 2(5), 427-436.
dc.relationLam, D. W., & Zechman, F. W. (2006). PHYLOGENETIC ANALYSES OF THE BRYOPSIDALES (ULVOPHYCEAE, CHLOROPHYTA) BASED ON RUBISCO LARGE SUBUNIT GENE SEQUENCES 1. Journal of Phycology, 42(3), 669-678.
dc.relationLe Campion-Alsumard, T., Golubic, S., & Hutchings, P. (1995). Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Marine Ecology Progress Series, 149-157.
dc.relationMagnusson, S. H., Fine, M., & Kühl, M. (2007). Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Marine Ecology Progress Series, 332, 119-128.
dc.relationMassé, A., Tribollet, A., Meziane, T., Bourguet Kondracki, M.-L., Yéprémian, C., Sève, C., Thiney, N., Longeon, A., Couté, A., & Domart Coulon, I. (2020). Functional diversity of microboring Ostreobium algae isolated from corals. Environmental Microbiology, 22(11), 4825-4846.
dc.relationMcCook, G. D.-P. L. J. (2002). The fate of bleached corals: Patterns and dynamics of algal recruitment. Marine Ecology Progress Series, 232, 115-128.
dc.relationMcEntyre, J., & Ostell, J. (2002). The NCBI Handbook [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2002.
dc.relationPerry, C. T. (2000). Factors controlling sediment preservation on a north Jamaican fringing reef: A process-based approach to microfacies analysis. Journal of Sedimentary Research, 70(3), 633-648.
dc.relationRadtke, G., Le Campion-Alsumard, T., & Golubi, S. (1996). Microbial assemblages of the bioerosional. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 469-482.
dc.relationSauvage, T., Schmidt, W. E., Suda, S., & Fredericq, S. (2016). A metabarcoding framework for facilitated survey of endolithic phototrophs with tufA. BMC ecology, 16(1), 1-21.
dc.relationSchlichter, D., Zscharnack, B., & Krisch, H. (1995). Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften, 82(12), 561-564.
dc.relationShashar, N., & Stambler, N. (1992). Endolithic algae within corals-life in an extreme environment. Journal of Experimental Marine Biology and Ecology, 163(2), 277-286.
dc.relationTribollet, A. (2008). The boring microflora in modern coral reef ecosystems: A review of its roles. Current developments in bioerosion, 67-94.
dc.relationTribollet, A., Chauvin, A., & Cuet, P. (2019). Carbonate dissolution by reef microbial borers: A biogeological process producing alkalinity under different pCO2 conditions. Facies, 65(2), 1-10.
dc.relationTribollet, A., Godinot, C., Atkinson, M., & Langdon, C. (2009). Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochemical Cycles, 23(3).
dc.relationTrujillo Ortegón, A. M. (2020). Ostreobium en el coral de profundidad Thalamophyllia riisei.
dc.relationVerbruggen, H., Ashworth, M., LoDuca, S. T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F. W., Littler, D. S., Littler, M. M., & Leliaert, F. (2009). A multi-locus time-calibrated phylogeny of the siphonous green algae. Molecular phylogenetics and evolution, 50(3), 642-653.
dc.relationVerbruggen, H., Leliaert, F., Maggs, C. A., Shimada, S., Schils, T., Provan, J., Booth, D., Murphy, S., De Clerck, O., & Littler, D. S. (2007). Species boundaries and phylogenetic relationships within the green algal genus Codium (Bryopsidales) based on plastid DNA sequences. Molecular phylogenetics and evolution, 44(1), 240-254.
dc.relationWoolcott, G. W., Knöller, K., & King, R. J. (2000). Phylogeny of the Bryopsidaceae (Bryopsidales, Chlorophyta): Cladistic analyses of morphological and molecular data. Phycologia, 39(6), 471-481.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleIdentificación genética del alga euendolítica Ostreobium en sustratos rocosos y sustratos coralinos usando el gen rbcL
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución