dc.contributor | Hurtado Belalcazar, John Jady | |
dc.contributor | Flores, Areli | |
dc.contributor | Macias Lopez, Mario Alberto | |
dc.contributor | Grupo de investigación en Química Inorgánica, Catálisis y Bioinorgánica | |
dc.creator | Agudelo Sosa, Elkin Sleider | |
dc.date.accessioned | 2022-08-03T18:49:24Z | |
dc.date.available | 2022-08-03T18:49:24Z | |
dc.date.created | 2022-08-03T18:49:24Z | |
dc.date.issued | 2022-07-25 | |
dc.identifier | http://hdl.handle.net/1992/59547 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | Durante el paso del tiempo, la automedicación y un incorrecto tratamiento en los residuos de medicamentos, entre otras causas, han llevado a un incremento exponencial en la resistencia de ciertas cepas de microorganismos hacia los medicamentos antimicrobianos tradicionales. Se ha demostrado que múltiples derivados de pirazoles tienen un efecto inhibitorio considerable contra diversas cepas. En muchos casos, el acoplamiento de centros metálicos mejora esta actividad, la química y la biología del cobre ha sido investigada ampliamente demostrando que es un centro metálico apropiado para el uso en complejos con ligandos que contienen heteroátomos de nitrógeno. Adicionalmente, los coligandos de ácido 3,5-dinitrobenzóico tienen propiedades antimicrobianas, por lo que su uso podría significar un aumento en la actividad de los complejos. Con esto en mente, se realizó la síntesis de 5 ligandos derivados de 3,5-dimetilpirazol (L2-L6) y seis complejos de coordinación (1-6), los ligandos y complejos se caracterizaron mediante técnicas analíticas y espectroscópicas para confirmar su formación. Se realizaron estudios en disolución y en estado sólido que pueden dar un indicio sobre su posible aplicación biológica. Se realizó la correcta síntesis y caracterización de ligandos y complejos derivados de 3,5-dimetrilpirazol y ácido dinitrobenzoico y se observó que los complejos formados presentan buena solubilidad en DMSO, alta estabilidad térmica, estabilidad al aire y en disolución. Este resultado es importante resaltarlo considerando que pueden presentar actividad antimicrobiana. | |
dc.description.abstract | Over time, self-medication and incorrect treatment of drug residues, among other causes, have led to an exponential increase in the resistance of certain strains of microorganisms to traditional antimicrobial drugs. Several pyrazole derivatives have been shown to have significant inhibitory effects against a variety of strains. In many cases, the blocking of metal centers improves this activity. The chemistry and biology of copper have been extensively investigated, showing that it is an appropriate metal center for use in complexes with ligands containing nitrogen heteroatoms. In addition, the 3,5-dinitrobenzoic acid coligands have antimicrobial properties, so their use could mean an increase in the activity of the complexes. With this in mind, the synthesis of 5 ligands derived from 3,5-dimethylpyrazole (L2-L6) and six coordination complexes (1-6) was carried out. The ligands and complexes were characterized by analytical and spectroscopic techniques to confirm their formation. Studies were carried out in solution and in solid states that may give an indication of its possible biological application. The correct synthesis and characterization of good ligands and complexes derived from 3,5-dimethylpyrazole and dinitrobenzoic acid was carried out, and it was shown that the complexes formed present solubility in DMSO, high thermal stability, and stability in air and in solution. This result is important to highlight considering that they can present antimicrobial activity. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Química | |
dc.relation | (1) CDC. Antibiotic-resistant Germs: New Threats. Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/biggest-threats.html (accessed 2021-05-02). | |
dc.relation | (2) Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed 2022-04-07). | |
dc.relation | (3) Home | AMR Review. https://amr-review.org/ (accessed 2022-04-07). | |
dc.relation | (4) Bongomin, F.; Gago, S.; Oladele, R. O.; Denning, D. W. Global and Multi-National Prevalence of Fungal Diseases Estimate Precision. J. Fungi 2017, 3 (4), 57. https://doi.org/10.3390/jof3040057 | |
dc.relation | (5) Brown, G. D.; Denning, D. W.; Gow, N. A. R.; Levitz, S. M.; Netea, M. G.; White, T. C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4 (165), 165rv13-165rv13. https://doi.org/10.1126/scitranslmed.3004404. | |
dc.relation | (6) Fisher, M. C.; Hawkins, N. J.; Sanglard, D.; Gurr, S. J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360 (6390), 739-742. https://doi.org/10.1126/science.aap7999. | |
dc.relation | (7) Verweij, P. E.; Lucas, J. A.; Arendrup, M. C.; Bowyer, P.; Brinkmann, A. J. F.; Denning, D. W.; Dyer, P. S.; Fisher, M. C.; Geenen, P. L.; Gisi, U.; Hermann, D.; Hoogendijk, A.; Kiers, E.; Lagrou, K.; Melchers, W. J. G.; Rhodes, J.; Rietveld, A. G.; Schoustra, S. E.; Stenzel, K.; Zwaan, B. J.; Fraaije, B. A. The One Health Problem of Azole Resistance in Aspergillus Fumigatus: Current Insights and Future Research Agenda. Fungal Biol. Rev. 2020, 34 (4), 202-214. https://doi.org/10.1016/j.fbr.2020.10.003 | |
dc.relation | (8) Rhodes, J.; Fisher, M. C. Global Epidemiology of Emerging Candida Auris. Curr. Opin. Microbiol. 2019, 52, 84-89. https://doi.org/10.1016/j.mib.2019.05.008. | |
dc.relation | (9) Ji Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Five-Membered Heterocycles. In The Chemistry of Heterocycles; Elsevier, 2019; pp 149-478. https://doi.org/10.1016/B978-0-08-101033-4.00005-X. | |
dc.relation | (10) Sarbu, L. g.; Bahrin, L. g.; Babii, C.; Stefan, M.; Birsa, M. l. Synthetic Flavonoids with Antimicrobial Activity: A Review. J. Appl. Microbiol. 2019, 127 (5), 1282-1290. https://doi.org/10.1111/jam.14271 | |
dc.relation | (11) Kumar, H.; Bansal, K. K.; Goyal, A. Synthetic Methods and Antimicrobial Perspective of Pyrazole Derivatives: An Insight. Anti-Infect. Agents 18 (3), 207-223. https://doi.org/10.2174/2211352517666191022103831. | |
dc.relation | (12) Santra, A.; Brandao, P.; Jana, H.; Mondal, G.; Bera, P.; Jana, A.; Bera, P. Copper(II) and Cobalt(II) Complexes of 5-Methyl Pyrazole-3-Carboxylic Acid: Synthesis, X-Ray Crystallography, Thermal Analysis and in Vitro Antimicrobial Activity. J. Coord. Chem. 2018, 71 (22), 3648-3664. https://doi.org/10.1080/00958972.2018.1520984. | |
dc.relation | (13) Ivanenkov, Y. A.; Balakin, K. V.; Tkachenko, S. E. New Approaches to the Treatment of Inflammatory Disease. Drugs R. D. 2008, 9 (6), 397-434. https://doi.org/10.2165/0126839-200809060-00005. | |
dc.relation | (14) Kendre, B. V.; Landge, M. G.; Bhusare, S. R. Synthesis and Biological Evaluation of Some Novel Pyrazole, Isoxazole, Benzoxazepine, Benzothiazepine and Benzodiazepine Derivatives Bearing an Aryl Sulfonate Moiety as Antimicrobial and Anti-Inflammatory Agents. Arab. J. Chem. 2019, 12 (8), 2091-2097. https://doi.org/10.1016/j.arabjc.2015.01.007. | |
dc.relation | (15) Chovatia, P. T.; Akabari, J. D.; Kachhadia, P. K.; Zalavadia, P. D.; Joshi, H. S. Synthesis and Selective Antitubercular and Antimicrobial Inhibitory Activity of 1-Acetyl-3,5-Diphenyl-4,5-Dihydro-(1h)-Pyrazole Derivatives. J. Serbian Chem. Soc. 2006, 71 (7), 713-720. https://doi.org/10.2298/JSC0607713C. | |
dc.relation | (17) Balding, P. R.; Porro, C. S.; McLean, K. J.; Sutcliffe, M. J.; Maréchal, J.-D.; Munro, A. W.; Visser, S. P. de. How Do Azoles Inhibit Cytochrome P450 Enzymes? A Density Functional Study. J. Phys. Chem. A 2008, 112 (50), 12911-12918. https://doi.org/10.1021/jp802087w. | |
dc.relation | (18) Ghannoum, M. A.; Rice, L. B. Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance. Clin. Microbiol. Rev. 1999, 12 (4), 501-517. https://doi.org/10.1128/CMR.12.4.501. | |
dc.relation | (19) Singh, R.; Ganguly, S. Azoles as Potent Antimicrobial Agents; IntechOpen, 2019. https://doi.org/10.5772/intechopen.88547. | |
dc.relation | (21) El Hammi, E.; Warkentin, E.; Demmer, U.; Marzouki, N. M.; Ermler, U.; Baciou, L. Active Site Analysis of Yeast Flavohemoglobin Based on Its Structure with a Small Ligand or Econazole. FEBS J. 2012, 279 (24), 4565-4575. https://doi.org/10.1111/febs.12043. | |
dc.relation | (22) Zhang, X.; Chen, J.; Hu, J.; Liu, M.; Cai, Z.; Xu, Y.; Sun, B. The Solubilities of Benzoic Acid and Its Nitro-Derivatives, 3-Nitro and 3,5-Dinitrobenzoic Acids. J. Chem. Res. 2021, 45 (11-12), 1100-1106. https://doi.org/10.1177/17475198211058617. | |
dc.relation | (23) Olive, P. L. Inhibition of DNA Synthesis by Nitroheterocycles. I. Correlation with Half-Wave Reduction Potential. Br. J. Cancer 1979, 40 (1), 89-93. https://doi.org/10.1038/bjc.1979.144. | |
dc.relation | (24) Pal, C.; Bandyopadhyay, U. Redox-Active Antiparasitic Drugs. Antioxid. Redox Signal. 2012, 17 (4), 555-582. https://doi.org/10.1089/ars.2011.4436. | |
dc.relation | (25) Smith, P. W. G.; Tatchell, A. R. CHAPTER VIII - AROMATIC CARBOXYLIC ACIDS. In Aromatic Chemistry; Smith, P. W. G., Tatchell, A. R., Eds.; Pergamon, 1969; pp 176-195. https://doi.org/10.1016/B978-0-08-012948-8.50011-5. | |
dc.relation | (26) Fonseca, D.; Leal-Pinto, S. M.; Roa-Cordero, M. V.; Vargas, J. D.; Moreno-Moreno, E. M.; Macías, M. A.; Suescun, L.; Muñoz-Castro, Á.; Hurtado, J. J. Inhibition of C. Albicans Dimorphic Switch by Cobalt(II) Complexes with Ligands Derived from Pyrazoles and Dinitrobenzoate: Synthesis, Characterization and Biological Activity. Int. J. Mol. Sci. 2019, 20 (13). https://doi.org/10.3390/ijms20133237. | |
dc.relation | (27) Jassal, A. K.; Sharma, S.; Hundal, G.; Hundal, M. S. Structural Diversity, Thermal Studies, and Luminescent Properties of Metal Complexes of Dinitrobenzoates: A Single Crystal to Single Crystal Transformation from Dimeric to Polymeric Complex of Copper(II). Cryst. Growth Des. 2015, 15 (1), 79-93. https://doi.org/10.1021/cg500883w. | |
dc.relation | (28) Posada, A. F.; Macías, M. A.; Movilla, S.; Miscione, G. P.; Pérez, L. D.; Hurtado, J. J. Polymers of -Caprolactone Using New Copper(II) and Zinc(II) Complexes as Initiators: Synthesis, Characterization and X-Ray Crystal Structures. Polymers 2018, 10 (11), E1239. https://doi.org/10.3390/polym10111239 | |
dc.relation | (29) Structural Diversity and Non-Covalent Interactions in Cd(II) and Zn(II) Complexes Derived from 3,5-Dinitrobenzoic Acid and Pyridine: Experimental and Theoretical Aspects. Inorganica Chim. Acta 2016, 440, 38-47. https://doi.org/10.1016/j.ica.2015.10.025. | |
dc.relation | (30) Pedireddi, V. R.; Varughese, S. Solvent-Dependent Coordination Polymers: Cobalt Complexes of 3,5-Dinitrobenzoic Acid and 3,5-Dinitro-4-Methylbenzoic Acid with 4,4-Bipyrdine. Inorg. Chem. 2004, 43 (2), 450-457. https://doi.org/10.1021/ic0349499. | |
dc.relation | (31) Tackett, J. E. FT-IR Characterization of Metal Acetates in Aqueous Solution. Appl. Spectrosc. 1989, 43 (3), 483-489. https://doi.org/10.1366/0003702894202931 | |
dc.relation | (32) Kaim, W.; Rall, J. CopperA "Modern" Bioelement. Angew. Chem. Int. Ed. Engl. 1996, 35 (1), 43-60. https://doi.org/10.1002/anie.199600431. | |
dc.relation | (33) Massey, A. G.; Thompson, N. R.; Johnson, B. F. G. The Chemistry of Copper, Silver and Gold: Pergamon Texts in Inorganic Chemistry; Elsevier, 2017. | |
dc.relation | (34) Rizvi, M. A.; Akhoon, S. A.; Maqsood, S. R.; Peerzada, G. M. Synergistic Effect of Perchlorate Ions and Acetonitrile Medium Explored for Extension in Copper Redoximetry. J. Anal. Chem. 2015, 70 (5), 633-638. https://doi.org/10.1134/S1061934815050093. | |
dc.relation | (35) Bott, R. C.; Bowmaker, G. A.; Davis, C. A.; Hope, G. A.; Jones, B. E. Crystal Structure of [Cu 4 (Tu) 7 ](SO 4 ) 2 ]·H 2 O and Vibrational Spectroscopic Studies of Some Copper(I) Thiourea Complexes. Inorg. Chem. 1998, 37 (4), 651-657. https://doi.org/10.1021/ic970910q. | |
dc.relation | (36) Rizvi, M. A. Complexation Modulated Redox Behavior of Transition Metal Systems (Review). Russ. J. Gen. Chem. 2015, 85 (4), 959-973. https://doi.org/10.1134/S1070363215040337. | |
dc.relation | (37) Antonietta Zoroddu, M.; Zanetti, S.; Pogni, R.; Basosi, R. An Electron Spin Resonance Study and Antimicrobial Activity of Copper(II)-Phenanthroline Complexes. J. Inorg. Biochem. 1996, 63 (4), 291-300. https://doi.org/10.1016/0162-0134(96)00015-3. | |
dc.relation | (38) Joseph, M.; Kuriakose, M.; Kurup, M. R. P.; Suresh, E.; Kishore, A.; Bhat, S. G. Structural, Antimicrobial and Spectral Studies of Copper(II) Complexes of 2-Benzoylpyridine N(4)-Phenyl Thiosemicarbazone. Polyhedron 2006, 25 (1), 61-70. https://doi.org/10.1016/j.poly.2005.07.006 | |
dc.relation | (39) Oladipo, S. D.; Omondi, B.; Mocktar, C. Synthesis and Structural Studies of Nickel(II)- and Copper(II)-N,N Diarylformamidine Dithiocarbamate Complexes as Antimicrobial and Antioxidant Agents. Polyhedron 2019, 170, 712-722. https://doi.org/10.1016/j.poly.2019.06.038. | |
dc.relation | (40) Patel, M. N.; Pansuriya, P. B.; Parmar, P. A.; Gandhi, D. S. Synthesis, Characterization, and Thermal and Biocidal Aspects of Drug-Based Metal Complexes. Pharm. Chem. J. 2008, 42 (12), 687-692. https://doi.org/10.1007/s11094-009-0214-2 | |
dc.relation | (41) O'Dell, B. L. Biochemistry of Copper. Med. Clin. North Am. 1976, 60 (4), 687-703. https://doi.org/10.1016/S0025-7125(16)31853-3. | |
dc.relation | (42) Gordon, A. S.; Howell, L. D.; Harwood, V. Responses of Diverse Heterotrophic Bacteria to Elevated Copper Concentrations. Can. J. Microbiol. 1994, 40 (5), 408-411. https://doi.org/10.1139/m94-067 | |
dc.relation | (43) Prado J, V.; Esparza M, M.; Vidal A, R.; Durán T, C. Adherence to Copper and Stainless Steel Metal Coupons of Common Nosocomial Bacterial Strains. Rev. Médica Chile 2013, 141 (3), 291-297. https://doi.org/10.4067/S0034-98872013000300002. | |
dc.relation | (44) Quaranta, D.; Krans, T.; Santo, C. E.; Elowsky, C. G.; Domaille, D. W.; Chang, C. J.; Grass, G. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces. Appl. Environ. Microbiol. 2011, 77 (2), 416-426. https://doi.org/10.1128/AEM.01704-10 | |
dc.relation | (45) Fonseca, D.; Páez, C.; Ibarra, L.; García-Huertas, P.; Macías, M. A.; Triana-Chávez, O.; Hurtado, J. J. Metal Complex Derivatives of Bis(Pyrazol-1-Yl)Methane Ligands: Synthesis, Characterization and Anti-Trypanosoma Cruzi Activity. Transit. Met. Chem. 2019, 44 (2), 135-144. https://doi.org/10.1007/s11243-018-0277-6. | |
dc.relation | (46) Murcia, R. A.; Leal, S. M.; Roa, M. V.; Nagles, E.; Muñoz-Castro, A.; Hurtado, J. J. Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules 2018, 23 (8), 2013. https://doi.org/10.3390/molecules23082013. | |
dc.relation | (47) Castillo, K. F.; Bello-Vieda, N. J.; Nuñez-Dallos, N. G.; Pastrana, H. F.; Celis, A. M.; Restrepo, S.; Hurtado, J. J.; Ávila, A. G. Metal Complex Derivatives of Azole: A Study on Their Synthesis, Characterization, and Antibacterial and Antifungal Activities. J. Braz. Chem. Soc. 2016. https://doi.org/10.5935/0103-5053.20160130. | |
dc.relation | (48) Stefani, H. A.; Pereira, C. M. P.; Almeida, R. B.; Braga, R. C.; Guzen, K. P.; Cella, R. A Mild and Efficient Method for Halogenation of 3,5-Dimethyl Pyrazoles by Ultrasound Irradiation Using N-Halosuccinimides. Tetrahedron Lett. 2005, 46 (40), 6833-6837. https://doi.org/10.1016/j.tetlet.2005.08.027. | |
dc.relation | (49) Morgan, G. T.; Ackerman, I. CLII."Substitution in the Pyrazole Series. Halogen Derivatives of 3": 5-Dimethylpyrazole. J. Chem. Soc. Trans. 1923, 123 (0), 1308-1318. https://doi.org/10.1039/CT9232301308. | |
dc.relation | (50) Torres, J. F.; Macías, M. A.; Franco-Ulloa, S.; Miscione, G. P.; Cobo, J.; Hurtado, J. J. Cu(II) and Zn(II) Complexes with Dinitrobenzoates and Pyrazolyl Ligands: Structural and Thermal Stability Influence of N-H Moiety. Cryst. Growth Des. 2019, 19 (6), 3348-3357. https://doi.org/10.1021/acs.cgd.9b00246. | |
dc.relation | (51) Jezuita, A.; Ejsmont, K.; Szatylowicz, H. Substituent Effects of Nitro Group in Cyclic Compounds. Struct. Chem. 2021, 32 (1), 179-203. https://doi.org/10.1007/s11224-020-01612-x. | |
dc.relation | (52) Refat, M.; El-Deen, I.; Abdellatif Zein, M.; Adam, A.; Kobeasy, M. Spectroscopic, Structural and Electrical Conductivity Studies of Co(II), Ni(II) and Cu(II) Complexes Derived from 4-Acetylpyridine with Thiosemicarbazide. Int. J. Electrochem. Sci. 2013, 8, 9894-9917. | |
dc.relation | (53) Kshash, A. H. The Effect of Hydrogen Bonding and Azomethine Group Orientation on Liquid Crystal Properties in Benzylidene Aniline Compounds. Acta Chim. Slov. 2020, 67 (3), 739-747. https://doi.org/10.17344/acsi.2019.5648. | |
dc.relation | (54) Finnie, K. S.; Bartlett, J. R.; Woolfrey, J. L. Vibrational Spectroscopic Study of the Coordination of (2,2 -Bipyridyl-4,4 -Dicarboxylic Acid)Ruthenium(II) Complexes to the Surface of Nanocrystalline Titania. Langmuir 1998, 14 (10), 2744-2749. https://doi.org/10.1021/la971060u. | |
dc.relation | (55) Applications in Inorganic Chemistry. In Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons, Ltd, 2008; pp 149-354. https://doi.org/10.1002/9780470405840.ch2. | |
dc.relation | (56) Bal, S.; Köytepe, S.; Connolly, J. D. Synthesis of Carbazole-Derived Ligands and Their Metal Complexes: Characterization, Thermal, Catalytic, and Electrochemical Features. Monatshefte Für Chem. - Chem. Mon. 2016, 147 (12), 2061-2071. https://doi.org/10.1007/s00706-016-1756-0. | |
dc.relation | (57) Donia, A. M. Thermal Stability of Transition-Metal Complexes. Thermochim. Acta 1998, 320 (1), 187-199. https://doi.org/10.1016/S0040-6031(98)00472-9. | |
dc.relation | (58) Chen, Z.; Deutsch, T. G.; Dinh, H. N.; Domen, K.; Emery, K.; Forman, A. J.; Gaillard, N.; Garland, R.; Heske, C.; Jaramillo, T. F.; Kleiman-Shwarsctein, A.; Miller, E.; Takanabe, K.; Turner, J. UV-Vis Spectroscopy. In Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols; Chen, Z., Dinh, H. N., Miller, E., Eds.; SpringerBriefs in Energy; Springer: New York, NY, 2013; pp 49-62. https://doi.org/10.1007/978-1-4614-8298-7_5. | |
dc.relation | (59) Meier, H.; Gerold, J.; Kolshorn, H.; Mühling, B. Extension of Conjugation Leading to Bathochromic or Hypsochromic Effects in OPV Series. Chem. Eur. J. 2004, 10 (2), 360-370. https://doi.org/10.1002/chem.200305447. | |
dc.relation | (60) Paris, J. P.; Brandt, W. W. CHARGE TRANSFER LUMINESCENCE OF A RUTHENIUM(II) CHELATE. J. Am. Chem. Soc. 1959, 81 (18), 5001-5002. https://doi.org/10.1021/ja01527a064. | |
dc.relation | (61) Liu, W.; Migdisov, A.; Williams-Jones, A. The Stability of Aqueous Nickel(II) Chloride Complexes in Hydrothermal Solutions: Results of UV-Visible Spectroscopic Experiments. Geochim. Cosmochim. Acta 2012, 94, 276-290. https://doi.org/10.1016/j.gca.2012.04.055. | |
dc.relation | (62) Donia, A. M.; El-Boraey, H. A. Preparation of Highly Insulating Dimeric and Polymeric Metal Complexes with Higher Thermal Stability in the Solid State. J. Anal. Appl. Pyrolysis 2002, 63 (1), 69-84. https://doi.org/10.1016/S0165-2370(01)00142-5. | |
dc.relation | (63) Esler, M. B.; Griffith, D. W. T.; Wilson, S. R.; Steele, L. P. Precision Trace Gas Analysis by FT-IR Spectroscopy. 1. Simultaneous Analysis of CO 2 , CH 4 , N 2 O, and CO in Air. Anal. Chem. 2000, 72 (1), 206-215. https://doi.org/10.1021/ac9905625. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Síntesis y caracterización de complejos de coordinación con centro metálico de Cu(II) y ligandos derivados de 3,5-dimetilpirazol y ácido 3,5-dinitrobenzóico | |
dc.type | Trabajo de grado - Maestría | |