dc.contributor | Salcedo Galán, Felipe | |
dc.creator | Ayalde Valderrama, Manuela | |
dc.date.accessioned | 2022-09-05T16:20:07Z | |
dc.date.available | 2022-09-05T16:20:07Z | |
dc.date.created | 2022-09-05T16:20:07Z | |
dc.date.issued | 2022-09-02 | |
dc.identifier | http://hdl.handle.net/1992/60421 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | Uno de los principales problemas ambientales actualmente es el de la contaminación por residuos plásticos y una de las soluciones planteadas es la del reciclaje químico. En el presente proyecto se trabajó la glicólisis como reacción para la depolimerización PET, en el cual se utilizaron residuos de botellas plásticas y etilenglicol como reactivos, obteniendo el monómero BHET. Se obtuvo una conversión del 70.49% del PET y una recuperación del 25.7% de BHET. Se utilizó un catalizador fabricado con cenizas de cáscara de naranja, el cual, a diferencia de otros catalizadores reportados en la literatura, es económico y amigable con el medio ambiente. El monómero BHET es frecuentemente utilizado en la industria para la síntesis del polímero PET y se corroboró la identidad del material a partir de caracterizaciones químicas y térmicas. Las caracterizaciones realizadas fueron: FTIR, TGA, DSC, tanto para el PET como para el BHET. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Ingeniería Química | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Química y de Alimentos | |
dc.relation | [1] A. L. Andrady and M. A. Neal, Applications and societal benefits of plastics, Philos. Trans. R. Soc.
, 2009, doi: 10.1098/rstb.2008.0304. | |
dc.relation | [2] P. Clunies-Ross, Plastics in the Environment, R. Soc. Te Ap¿rangi, vol. 35, no. 4, pp. 230-230, 2019, doi: 10.2307/4444330. | |
dc.relation | [3] ASTM D883, Standard Terminology relating to Plastics, 2020. | |
dc.relation | [4] N. L. Thomas, J. Clarke, A. R. McLauchlin, and S. G. Patrick, Oxo-degradable plastics:
Degradation, environmental impact and recycling, Proc. Inst. Civ. Eng. Waste Resour. Manag.,
vol. 165, no. 3, pp. 133-140, Aug. 2012, doi: 10.1680/WARM.11.00014. | |
dc.relation | [5] L. Filiciotto and G. Rothenberg, Biodegradable Plastics: Standards, Policies, and Impacts,
ChemSusChem, vol. 14, no. 1, pp. 56-72, 2021, doi: 10.1002/cssc.202002044. | |
dc.relation | [6] V. Menicagli, E. Balestri, F. Vallerini, A. Castelli, and C. Lardicci, Adverse effects of nonbiodegradable and compostable plastic bags on the establishment of coastal dune vegetation:
First experimental evidences, Environ. Pollut., vol. 252, pp. 188-195, 2019, doi:
10.1016/j.envpol.2019.05.108. | |
dc.relation | [7] E. Balestri, V. Menicagli, V. Ligorini, S. Fulignati, A. M. Raspolli Galletti, and C. Lardicci,
Phytotoxicity assessment of conventional and biodegradable plastic bags using seed
germination test, Ecol. Indic., vol. 102, no. November 2018, pp. 569-580, 2019, doi:
10.1016/j.ecolind.2019.03.005. | |
dc.relation | [8] A. D5338, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions , Incorporating thermophilic temperatures, vol. 15, no.
Reapproved, pp. 4-9, 2021, doi: 10.1520/D5338-15R21.Copyright. | |
dc.relation | [9] T. Thiounn and R. C. Smith, Advances and approaches for chemical recycling of plastic waste, J.Polym. Sci., vol. 58, no. 10, pp. 1347-1364, May 2020, doi: 10.1002/POL.20190261. | |
dc.relation | [10] J. F. Bermudez, A. M. Montoya-Ruiz, and J. F. Saldarriaga, Assessment of the current situation of informal recyclers and recycling: Case study Bogotá, Sustain., vol. 11, no. 22, 2019, doi:
10.3390/su11226342. | |
dc.relation | [11] C. J. de M. A. Y. salud publica (MASP) Green Peace, Situación actual de Colombia y su impacto en el medio ambiente, Green Peace, p. 14, 2019, [Online]. Available:
http://greenpeace.co/pdf/2019/gp_informe_plasticos_colombia_02.pdf. | |
dc.relation | [12] M. Filella, Antimony and PET bottles: Checking facts, Chemosphere, vol. 261, p. 127732, 2020,
doi: 10.1016/j.chemosphere.2020.127732. | |
dc.relation | [13] C. W. Tan et al., Modelling of the injection stretch blow moulding of PET containers via a
Pressure-Volume-time (PV-t) thermodynamic relationship, Int. J. Mater. Form., vol. 1, no. SUPPL. 1, pp. 799-802, 2008, doi: 10.1007/s12289-008-0296-5. | |
dc.relation | [14] PlascticEurope-Association of Plastics Manufactures, Plastics - the Facts 2020, PlasticEurope,
pp. 1-64, 2020, [Online]. Available:
https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020. | |
dc.relation | [15] R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci.
Adv., vol. 3, no. 7, pp. 19-24, 2017. | |
dc.relation | [16] J. Jiang et al., From plastic waste to wealth using chemical recycling: A review, J. Environ. Chem.
Eng., vol. 10, no. 1, p. 106867, Feb. 2022, doi: 10.1016/J.JECE.2021.106867. | |
dc.relation | [17] M. Shen et al., Can incineration completely eliminate plastic wastes? An investigation of
microplastics and heavy metals in the bottom ash and fly ash from an incineration plant, Sci.
Total Environ., vol. 779, p. 146528, Jul. 2021, doi: 10.1016/J.SCITOTENV.2021.146528. | |
dc.relation | [18] C. Bach, X. Dauchy, M. C. Chagnon, and S. Etienne, Chemical compounds and toxicological
assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed, Water Res., vol. 46, no. 3, pp. 571-583, 2012, doi:
10.1016/j.watres.2011.11.062. | |
dc.relation | [19] A. C. Espinosa-López et al., Microwave-assisted esterification step of poly(ethylene
terephthalate) (PET) synthesis through ethylene glycol and terephthalic acid, Polym. Bull., vol.
76, no. 6, pp. 2931-2944, 2019, doi: 10.1007/s00289-018-2521-9. | |
dc.relation | [20] A. L. Jadhav, R. S. Malkar, and G. D. Yadav, Zn-and Ti-Modified Hydrotalcites for
Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and
Catalyst Synthesis Method, ACS Omega, vol. 5, no. 5, pp. 2088-2096, 2020, doi:
10.1021/acsomega.9b02230. | |
dc.relation | [21] A. Villalobos Hernández, Estudio del agrietamiento por tensión ambiental de envases de PET, Centro de investigación en química aplicada, 2018. | |
dc.relation | [22] A. C. Espinosa López, Estudio del proceso de polimerización por microondas del
polietilentereftalato y del nanohíbrido PET/TiO2, Centro de investigación en química aplicada,2018. | |
dc.relation | [23] F. I. Chowdhury, Sustainable resin systems for polymer composites, in Advances in Sustainable
Polymer Composites, Woodhead Publishing, 2021, pp. 89-108. | |
dc.relation | [24] K. Ghosal and C. Nayak, Recent advances in chemical recycling of polyethylene terephthalate
waste into value added products for sustainable coating solutions - hope vs . hype, Mater. Adv.,
2022, doi: 10.1039/d1ma01112j. | |
dc.relation | [25] A. M. Al-Sabagh, F. Z. Yehia, G. Eshaq, A. M. Rabie, and A. E. ElMetwally, Greener routes for
recycling of polyethylene terephthalate, Egypt. J. Pet., vol. 25, no. 1, pp. 53-64, 2016, doi:
10.1016/j.ejpe.2015.03.001. | |
dc.relation | [26] I. Vollmer et al., Beyond Mechanical Recycling:Giving New Life to Plastic Waste, doi:
10.1002/anie.201915651. | |
dc.relation | [27] M. Saad Qureshi et al., Pyrolysis of plastic waste: Opportunities and challenges, 2020, doi:
10.1016/j.jaap.2020.104804. | |
dc.relation | [28] A. R. Rahimi and J. M. Garciá, Chemical recycling of waste plastics for new materials
production, Nat. Rev. Chem., vol. 1, Jan. 2017, doi: 10.1038/S41570-017-0046. | |
dc.relation | [29] M. Han, Depolymerization of PET Bottle via Methanolysis and Hydrolysis, Recycl. Polyethyl.
Terephthalate Bottles, pp. 85-108, Jan. 2019, doi: 10.1016/B978-0-12-811361-5.00005-5. | |
dc.relation | [30] S. D. Mancini and M. Zanin, Post consumer pet depolymerization by acid hydrolysis, Polym. -
Plast. Technol. Eng., vol. 46, no. 2, pp. 135-144, Feb. 2007, doi: 10.1080/03602550601152945. | |
dc.relation | [31] M. J. Kang, H. J. Yu, J. Jegal, H. S. Kim, and H. G. Cha, Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst, Chem. Eng. J., vol. 398, no. May, p.125655, 2020, doi: 10.1016/j.cej.2020.125655. | |
dc.relation | [32] G. P. Karayannidis, A. P. Chatziavgoustis, and D. S. Achilias, Poly(ethylene terephthalate)
recycling and recovery of pure terephthalic acid by alkaline hydrolysis, Adv. Polym. Technol., vol.
21, no. 4, pp. 250-259, Dec. 2002, doi: 10.1002/ADV.10029. | |
dc.relation | [33] S. R. Shukla and A. M. Harad, Aminolysis of polyethylene terephthalate waste, Polym. Degrad.
Stab., vol. 91, no. 8, pp. 1850-1854, Aug. 2006, doi: 10.1016/J.POLYMDEGRADSTAB.2005.11.005. | |
dc.relation | [34] N. Tarannum et al., Chemical depolymerization of recycled PET to oxadiazole and hydrazone derivatives: Synthesis, characterization, molecular docking and DFT study, J. King Saud Univ. -
Sci., vol. 34, no. 1, p. 101739, 2022, doi: 10.1016/j.jksus.2021.101739. | |
dc.relation | [35] T. Spychaj, E. Fabrycy, S. Spychaj, and M. Kacperski, Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate) | Request PDF, J. Mater. Cycles Waste Manag., 2001, Accessed:
May 18, 2022. [Online]. Available:
https://www.researchgate.net/publication/225105600_Aminolysis_and_aminoglycolysis_of_was
te_polyethylene_terephthalate. | |
dc.relation | [36] P. Gupta and S. Bhandari, Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis, Recycl. Polyethyl. Terephthalate Bottles, pp. 109-134, Jan. 2019, doi: 10.1016/B978-
0-12-811361-5.00006-7. | |
dc.relation | [37] A. Mittal, R. K. Soni, K. Dutt, and S. Singh, Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis, J. Hazard.
Mater., vol. 178, no. 1-3, pp. 390-396, Jun. 2010, doi: 10.1016/J.JHAZMAT.2010.01.092. | |
dc.relation | [38] Z. T. Laldinpuii et al., Methanolysis of PET Waste Using Heterogeneous Catalyst of Bio-waste
Origin, J. Polym. Environ., vol. 30, no. 4, pp. 1600-1614, Apr. 2022, doi: 10.1007/S10924-021-
02305-0. | |
dc.relation | [39] D. D. Pham and J. Cho, Low-energy catalytic methanolysis of poly(ethyleneterephthalate),
Green Chem., vol. 23, no. 1, pp. 511-525, Jan. 2021, doi: 10.1039/D0GC03536J. | |
dc.relation | [40] S. Lalhmangaihzuala, Z. Laldinpuii, C. Lalmuanpuia, and K. Vanlaldinpuia, Glycolysis of
poly(Ethylene terephthalate) using biomass-waste derived recyclable heterogeneous catalyst,
Polymers (Basel)., vol. 13, no. 1, pp. 1-13, 2021, doi: 10.3390/polym13010037. | |
dc.relation | [41] C. T. Pham et al., The advancement of bis(2-hydroxyethyl)terephthalate recovered from postconsumer poly(ethylene terephthalate) bottles compared to commercial polyol for preparation
of high performance polyurethane, J. Ind. Eng. Chem., vol. 93, pp. 196-209, Jan. 2021, doi:
10.1016/J.JIEC.2020.09.024. | |
dc.relation | [42] G. Guclu, A. Kasgoz, S. Osbudak, S. Ozgumus, and M. Orbay, Glycolysis of poly(ethylene
terephthalate) wastes in xylene. Journal of Applied Polymer Science, 69(12), 2311-2319 |
10.1002/(sici)1097-4628(19980919)69:12<2311::aid-app2>3.0.co;2-b,¿ 1997, Accessed: May 19,2022. [Online]. Available: https://sci-hub.se/https://doi.org/10.1002/(SICI)1097-
4628(19980919)69:12%3C2311::AID-APP2%3E3.0.CO;2-B. | |
dc.relation | [43] M. Imran, B. K. Kim, M. Han, B. G. Cho, and D. H. Kim, Sub-and supercritical glycolysis of
polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET),
Polym. Degrad. Stab., vol. 95, no. 9, pp. 1686-1693, 2010, doi:
10.1016/j.polymdegradstab.2010.05.026. | |
dc.relation | [44] N. D. Pingale and S. R. Shukla, Microwave assisted ecofriendly recycling of poly (ethylene
terephthalate) bottle waste, Eur. Polym. J., vol. 44, no. 12, pp. 4151-4156, Dec. 2008, doi:
10.1016/J.EURPOLYMJ.2008.09.019. | |
dc.relation | [45] L. Bartolome, M. Imran, B. Gyoo, W. A., and D. Hyun, Recent Developments in the Chemical
Recycling of PET, Mater. Recycl. - Trends Perspect., no. March, 2012, doi: 10.5772/33800. | |
dc.relation | [46] H. Wang, Z. Li, Y. Liu, X. Zhang, and S. Zhang, Degradation of poly(ethylene terephthalate) using
ionic liquids, Green Chem., vol. 11, no. 10, pp. 1568-1575, Oct. 2009, doi: 10.1039/B906831G. | |
dc.relation | [47] G. Park, L. Bartolome, K. G. Lee, S. J. Lee, D. H. Kim, and T. J. Park, One-step sonochemical
synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate), Nanoscale, vol. 4, no. 13, pp. 3879-3885, Jul. 2012, doi:
10.1039/C2NR30168G. | |
dc.relation | [48] G. Editors et al., Process Simulation of Bis (2-hydroxyethyl) terephthalate and Its Recovery Using
Two-stage Evaporation Systems, Chem. Eng. Trans., vol. 63, 2018, doi: 10.3303/CET1863110. | |
dc.relation | [49] T. Yoshioka, N. Okayama, and A. Okuwaki, Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model, Ind. Eng. Chem. Res., vol. 37, no. 2, pp. 336-340, 1998, doi:
10.1021/IE970459A. | |
dc.relation | [50] S. Kandasamy, A. Subramaniyan, G. Ramasamy, A. R. Ahamed, N. Manickam, and B. Dhandapani,
Study of alkaline hydrolysis of post consumed polyethylene terephthalate waste, AIP Conf.
Proc., vol. 2240, May 2020, doi: 10.1063/5.0011020. | |
dc.relation | [51] L. M. Labban, M. J. Mouzik, and A. D. A. S. Othman, Comparison of Sodium and Potassium
Content in Fresh Produce and their Contribution to The Daily Intake, ADR journals, 2017,
Accessed: May 27, 2022. [Online]. Available:
https://www.researchgate.net/publication/322635434_Comparison_of_Sodium_and_Potassium
_Content_in_Fresh_Produce_and_their_Contribution_to_The_Daily_Intake. | |
dc.relation | [52] A. H. Yasir, A. S. Khalaf, and M. N. Khalaf, Preparation and Characterization of Oligomer from
Recycled PET and Evaluated as a Corrosion Inhibitor for C-Steel Material in 0.1 M HCl, Open J.
Org. Polym. Mater., vol. 07, no. 01, pp. 1-15, 2017, doi: 10.4236/OJOPM.2017.71001. | |
dc.relation | [53] A. A. Syariffuddeen, A. Norhafizah, and A. Salmiaton, Glycolysis Of Poly (Ethylene Terephthalate)
(PET) Waste Under Conventional Convection-Conductive Glycolysis, Accessed: May 27, 2022.
[Online]. Available: www.ijert.org. | |
dc.relation | [54] Y. Kong and J. N. Hay, Multiple melting behaviour of poly(ethylene terephthalate), Polymer
(Guildf)., vol. 44, no. 3, pp. 623-633, Dec. 2002, doi: 10.1016/S0032-3861(02)00814-5. | |
dc.relation | [55] C. V. G. Silva et al., PET glycolysis optimization using ionic liquid [Bmin]ZnCl 3 as catalyst and
kinetic evaluation, Polimeros, vol. 28, no. 5, pp. 450-459, 2018, doi: 10.1590/0104-1428.00418. | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Obtención de BHET a partir de residuos de botellas plásticas de PET mediante glicólisis catalizada con ceniza de cáscara de naranja | |
dc.type | Trabajo de grado - Pregrado | |