dc.contributorLasso de Paulis, Eloisa
dc.contributorGonzález Arango, Catalina
dc.contributorReich, Peter
dc.contributorGrupo de Ecología y Fisiología Vegetal
dc.creatorCruz Aguilar, Marisol
dc.date.accessioned2022-08-10T14:28:36Z
dc.date.available2022-08-10T14:28:36Z
dc.date.created2022-08-10T14:28:36Z
dc.date.issued2022-06-08
dc.identifierhttp://hdl.handle.net/1992/59762
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractAbove treeline in the mountains from the Northern Andes, there is an ecosystem of restricted distribution locally called as páramo. Páramos are tropical ecosystems of high altitude where there are special conditions that make them and their flora unique, such as greatly dynamic cloud conditions, excessive amounts of UV radiation, rapid changes of incident sunlight and pronounced temperature fluctuations during each day, among others. They are critical as a source of water in the region, are important carbon sinks, are home to a vast endemic flora, and possess some of the fastest rates of diversification in the world. Although the ecosystemic services of páramos depend to their high spatial abiotic and biotic heterogeneity that generates complex mosaics of plants associations; unfortunately, little work has been done on the susceptibility of páramo plants to climate change. Human-induced climate change is affecting all the Earth's biomes, including páramos, where models predict that temperatures will increase, while the volume and frequency of precipitation will decrease to the end of this century. All research indicates that warmer and drier environments will drive vegetation upward, as plants did in the past, during interglacial periods, rather than adapting to the new conditions. Plants can respond to climate change by adaptation, migration, or local extinction; adaptation implies that plants can acclimate its physiology to the new conditions, migration requires reproductive traits that favored dispersal and colonization of new areas, and it is well established, that species with limited ranges of distribution, such as those restricted to the páramo, have a higher risk of extinction. However, adaptation and migration capacities are not enough studied facing global warming in plants of the humid Colombian páramo. In the first chapter, new findings in plant functional classification are presented that allow us to conclude that although the harsh conditions of páramos promote a huge variety of morphological adaptations, it is also the cause of a smaller number of functional responses, and since functional responses are closely linked to growth forms, in páramos it could be useful to use growth forms as a proxy of plant functional types (PFT) in all cases and with caution in the case of shrubs. In the second chapter, thermal acclimation of photosynthesis and respiration was evaluated and, in addition to the limited functional response, it was found that páramo plants have a limited capacity for thermal acclimation, but although páramo plants cannot adjust their physiology to warming, high temperatures do not have an adverse effect on plant performance. Finally, in the third chapter, the effect of warmer temperatures on germination traits was evaluated and it was found that seeds of few páramos plants will be affected by higher temperatures, so it appears that there is a wide range of temperature functioning for germination processes. All results together seem indicate that although páramo plants are more capable of migrating than adapting, they would survive because other mechanisms as decoupling leaf temperature from ambient temperature may operate ensuring their survival.
dc.description.abstractEn las montañas del norte de los Andes, por encima del límite arbóreo, existe un ecosistema de distribución restringida denominado localmente como páramo. Los páramos son ecosistemas tropicales de gran altitud en los que existen condiciones especiales que los hacen únicos a ellos y a su flora, como son las condiciones de nubosidad muy dinámicas, la excesiva cantidad de radiación UV, los rápidos cambios de la luz solar incidente y las pronunciadas fluctuaciones de temperatura durante cada día, entre otras. Los páramos juegan un papel importante como fuente de agua en la región, son significativos sumideros de carbono en los suelos, albergan una vasta flora endémica y poseen una de las tasas de diversificación más rápidas del mundo. Aunque los servicios ecosistémicos de los páramos dependen de su elevada heterogeneidad espacial abiótica y biótica, que genera complejos mosaicos de asociaciones de plantas, lamentablemente se ha trabajado poco sobre la susceptibilidad de las plantas de los páramos al cambio climático. El cambio climático inducido por el hombre está afectando a todos los biomas de la Tierra, incluidos los páramos, donde los modelos predicen que las temperaturas aumentarán, mientras que los patrones de precipitaciones son inciertos para finales de este siglo. Todas las investigaciones indican que los ambientes más cálidos y probablemente más secos impulsarán la vegetación hacia límites superiores, como lo hicieron las plantas en el pasado, durante los períodos interglaciares, antes que adaptarse a las nuevas condiciones ambientales. Las plantas tienen tres opciones para responder al cambio climático: la adaptación, la migración o la extinción local; la adaptación implica que las plantas puedan aclimatar su fisiología a las nuevas condiciones ambientales, la migración requiere rasgos reproductivos que favorezcan la dispersión y colonización de nuevas áreas, y está bien establecido, que las especies con rangos de distribución limitados, como las restringidas al páramo, tienen un mayor riesgo de extinción. Sin embargo, las capacidades de adaptación y migración no están suficientemente estudiadas frente al calentamiento global en las plantas del páramo húmedo colombiano. En la sección de introducción se definen los ecosistemas de páramo y su singularidad climática y biológica, así como las principales amenazas actuales para el ecosistema, especialmente el efecto del cambio climático. En el primer capítulo se presentan nuevos hallazgos en la clasificación funcional de las plantas que permiten concluir que aunque las duras condiciones de los páramos promueven una enorme variedad de adaptaciones morfológicas, también es la causa de un número menor de respuestas funcionales, y dado que las respuestas funcionales están estrechamente ligadas a las formas de crecimiento, en los páramos podría ser útil utilizar las formas de crecimiento como proxy de los tipos funcionales de las plantas (TFP) en todos los casos y con precaución en el caso de los arbustos. En el segundo capítulo, se evaluó la aclimatación térmica de la fotosíntesis y la respiración y, además de la respuesta funcional limitada, se encontró que las plantas de páramo tienen una capacidad limitada de aclimatación térmica, pero, aunque las plantas de páramo no puedan ajustar su fisiología al calentamiento, las altas temperaturas no tendrán un efecto adverso en el funcionamiento de las plantas. Finalmente, en el tercer capítulo, se evaluó el efecto de las temperaturas más cálidas sobre los rasgos de germinación y se encontró que las semillas de pocas plantas de páramo se verán afectadas por temperaturas más altas, por lo que parece que existe un amplio rango de funcionamiento de la temperatura para los procesos de germinación. Todos los resultados en conjunto parecen indicar que, aunque las plantas de páramo son más capaces de migrar que de adaptarse, sobrevivirían porque otros mecanismos como el desacoplamiento de la temperatura foliar de la temperatura ambiental pueden operar asegurando su supervivencia.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherDoctorado en Ciencias - Biología
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAnderson, E. P., Marengo, J. A., Villalba, R., Halloy, S. R. P., Young, B. E., Cordero, D., Gast, F., Jaimes, E., & Ruiz, D. (2012). Consecuencias del cambio climático en los ecosistemas y servicios ecosistémicos de los Andes Tropicales. In S. K. Herzog, R. Martínez, P. M. Jørgensen, & H. Tiessen (Eds.), Climate change and Biodiversity in the Tropical Andes (p. 410). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).
dc.relationAtkin, O. K., Holly, C., & Ball, M. C. (2000). Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: The importance of changes in the capacity and temperature sensitivity of respiration. Plant, Cell and Environment, 23(1), 15-26. https://doi.org/10.1046/j.1365-3040.2000.00511.x
dc.relationAtkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. In Trends in Plant Science (Vol. 8, Issue 7, pp. 343-351). Elsevier Current Trends. https://doi.org/10.1016/S1360-1385(03)00136-5
dc.relationAzócar, A., Rada, F., & García-Núñez, C. (2000). Aspectos ecofisiológicos para la conservación de ecosistemas tropicales contrastantes. Boletín de La Sociedad Botánica de México, 65, 6.
dc.relationBaruch, Z. (1979). Elevation Differentiation in Espeletia Schultzii (Compositae), A Giant Rosette Plant of the Venezuelan Paramos. Ecology, 60(1), 85-98. https://doi.org/10.2307/1936471
dc.relationBaruch, Z., & Smith, A. P. (1979). Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes. Oecologia, 38(1), 71-82. https://doi.org/10.1007/BF00347825
dc.relationBaskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, biogeography, and, evolution of dormancy and germination. Elsevier.
dc.relationBerry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. https://doi.org/10.1146/annurev.pp.31.060180.002423
dc.relationBillings, W. D. (1973). Arctic and Alpine Vegetations: Similarities, Differences, and Susceptibility to Disturbance. BioScience, 23(12), 697-704. https://doi.org/10.2307/1296827
dc.relationBolstad, Mitchell, & Vose. (1999). Foliar temperature-respiration response functions for broad-leaved tree species in the southern Appalachians. Tree Physiology, 19(13), 871-878.
dc.relationBuytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1-2), 53-72. http://dx.doi.org/10.1016/j.earscirev.2006.06.002
dc.relationBuytaert, W., Deckers, J., & Wyseure, G. (2006). Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (páramo). Geomorphology, 73(3-4), 207-221. http://dx.doi.org/10.1016/j.geomorph.2005.06.012
dc.relationBuytaert, W., Iñiguez, V., & Bièvre, B. De. (2007). The effects of afforestation and cultivation on water yield in the Andean páramo. Forest Ecology and Management, 251(1-2), 22-30. http://dx.doi.org/10.1016/j.foreco.2007.06.035
dc.relationBuytaert, W., Sevink, J., De Leeuw, B., & Deckers, J. (2005). Clay mineralogy of the soils in the south Ecuadorian páramo region. Geoderma, 127(1-2), 114-129. https://doi.org/10.1016/j.geoderma.2004.11.021
dc.relationCampbell, C., Atkinson, L., Zaragoza-Castells, J., Lundmark, M., Atkin, O., & Hurry, V. (2007). Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 176(2), 375-389. https://doi.org/10.1111/j.1469-8137.2007.02183.x
dc.relationCárdenas, C., Posada, C., & Vargas, O. (2002). Banco de semillas germinable de una comunidad vegetal de paramo húmedo sometida a quema y pastoreo (Parque Nacional Natural Chingaza, Colombia). Ecotropicos, 15(1), 51-60.
dc.relationCastaño-Uribe, C. (2002). Colombia alto andina y la significancia ambiental del bioma páramo en el contexto de los andes tropicales: Una aproximación a los efectos futuros por el cambio climático global (Global Climatic Tensor). In C. Castaño-Uribe (Ed.), Aproximación al efecto del Global Climatic Tensor en el Bioma Páramo (p. 387). IDEAM.
dc.relationCortés, A. J., Garzón, L. N., Valencia, J. B., & Madriñán, S. (2018). On the Causes of Rapid Diversification in the Páramos: Isolation by Ecology and Genomic Divergence in Espeletia. Frontiers in Plant Science, 9, 1700. https://doi.org/10.3389/fpls.2018.01700
dc.relationCuesta F., Muriel P., Beck S., Meneses R.I., Halloy S., Salgado S, Ortiz E, B. M. T. (2012). Biodiversidad y Cambio Climático en los Andes Tropicales Conformación de una red de investigación para monitorear sus impactos y delinear acciones de adaptación (B. M. T. Cuesta Francisco, Muriel P., Beck S., Meneses R.I., Halloy S., Salgado S, Ortiz E, Ed.). Red Gloria-Andes.
dc.relationCuriel-Yuste, J., Here¿, A. M., Ojeda, G., Paz, A., Pizano, C., García-Angulo, D., & Lasso, E. (2017). Soil heterotrophic CO2 emissions from tropical high-elevation ecosystems (Páramos) and their sensitivity to temperature and moisture fluctuations. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2017.02.016
dc.relationDebouza, N. E., Babu Thruppoyil, S., Gopi, K., Zain, S., & Ksiksi, T. (2021). Plant and seed germination responses to global change, with a focus on CO2: A review. One Ecosystem. https://doi.org/10.3897/oneeco.6.e74260
dc.relationDíaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P., & Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9), 2958-2975. https://doi.org/10.1002/ece3.601
dc.relationDirnböck, T., Dullinger, S., & Grabherr, G. (2003). A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30(3), 401-417. https://doi.org/10.1046/j.1365-2699.2003.00839.x
dc.relationDormann S. J. Woodin, C. F. (2002). Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Functional Ecology, 16(1), 4-17.
dc.relationDoughty, C. E., & Goulden, M. L. (2008). Are tropical forests near a high temperature threshold Journal of Geophysical Research: Biogeosciences, 113(G1). https://doi.org/10.1029/2007JG000632
dc.relationEstrada, C., & Monasterio, M. (1988). Ecología poblacional de una roseta gigante, Espeletia spicata Sch. Bip. (Compositae), del páramo desértico. Ecotropicos, 1, 25-39.
dc.relationFagua, J. C., & González, V. H. (2007). Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant andean caulescent rosette. Plant Biology, 9(1), 127-135.
dc.relationFarquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. https://doi.org/10.1007/BF00386231
dc.relationFrantzen, N. M. L. H. F., & Bouman, F. (1989). Dispersal and growth form patterns of some zonal páramo vegetation types. 38(4), 449-465.
dc.relationFunk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J., Laughlin, D. C., Sutton-Grier, A. E., Williams, L., & Wright, J. (2017). Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biological Reviews, 92(2), 1156-1173. https://doi.org/10.1111/brv.12275
dc.relationGauthier, P. P. G., Crous, K. Y., Ayub, G., Duan, H., Weerasinghe, L. K., Ellsworth, D. S., Tjoelker, M. G., Evans, J. R., Tissue, D. T., & Atkin, O. K. (2014). Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. Journal of Experimental Botany, 65(22), 6471-6485. https://doi.org/10.1093/jxb/eru367
dc.relationGoldstein, G., & Meinzer, F. (1983). Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant, Cell and Environment, 6(8), 649-656. https://doi.org/10.1111/1365-3040.ep11589230
dc.relationGoldstein, G., Meinzer, F., & Monasterio, M. (1984). The role of capacitance in the water balance of Andean giant rosette species. Plant, Cell and Environment, 7(3), 179-186. https://doi.org/10.1111/1365-3040.ep11614612
dc.relationGuariguata, M. R., & Azocar, A. (1988). Seed Bank Dynamics and Germination Ecology in Espeletia timotensis (Compositae), an Andean Giant Rosette. Biotropica, 20(1), 54-59. JSTOR. https://doi.org/10.2307/2388426
dc.relationGunderson, C. A., O'hara, K. H., Campion, C. M., Walker, A. V., & Edwards, N. T. (2010). Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Global Change Biology, 16(8), 2272-2286. https://doi.org/10.1111/j.1365-2486.2009.02090.x
dc.relationHedberg, O. (1964). Features of Afroalpine Plant Ecology. Acta Phytogeographica Suecica 49, 150.
dc.relationHikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. (2006). Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57(2), 291-302.
dc.relationHofstede, R. (2002). El manejo del páramo como ecosistema estratégico. In Los Páramos Andinos: Los desafios del Siglo XXI (Vol. 74, Issue 17 2, pp. 5-41).
dc.relationHofstede, R., Calles, J., López, V., Polanco, R., Torres, F., Ulloa, J., Vásquez, A., & Cerra, M. (2014). Los páramos andinos ¿Qué sabemos? Estado de conocimiento sobre el impacto del cambio climático en el ecosistema páramo. UICN.
dc.relationHofstede, R. G. M. (1995). The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant and Soil, 173(1), 111-132. https://doi.org/10.1007/BF00155524
dc.relationHughes, L. (2000). Biological consequences of global warming: Is the signal already apparent In Trends in Ecology and Evolution. https://doi.org/10.1016/S0169-5347(99)01764-4
dc.relationIPCC. (2021). Climate Change 2021: Impacts, Adaptation, and Vulnerability. A Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
dc.relationIves, A. R., & Carpenter, S. R. (2007). Stability and Diversity of Ecosystems. Science, 317(5834), 58-62. https://doi.org/10.1126/science.1133258
dc.relationJanzen, D. H. (1967). Why Mountain Passes are Higher in the Tropics. In The American Naturalist (Vol. 101, Issue 919, pp. 233-249). https://doi.org/10.1086/282487
dc.relationKappelle, M., Lovejoy, T. E., & Gámez Lobo, R. (2016). Costa Rican Ecosystems. University of Chicago Press. https://doi.org/10.7208/chicago/9780226121642.001.0001
dc.relationKattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant, Cell and Environment, 30(9), 1176-1190. https://doi.org/10.1111/j.1365-3040.2007.01690.x
dc.relationKörner, C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. In Alpine Plant Life, 2nd Edn. https://doi.org/10.1007/978-3-642-18970-8
dc.relationLlambí, L., & Rada, F. (2019). Ecological research in the tropical alpine ecosystems of the Venezuelan páramo: Past, present and future. Plant Ecology & Diversity, 1-20. https://doi.org/10.1080/17550874.2019.1680762
dc.relationLaporte, M. A., Mougenot, I., & Garnier, E. (2012). ThesauForm-Traits: A web based collaborative tool to develop a thesaurus for plant functional diversity research. Ecological Informatics, 11, 34-44. https://doi.org/10.1016/j.ecoinf.2012.04.004
dc.relationLaughlin, D. C. (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102(1), 186-193. https://doi.org/10.1111/1365-2745.12187
dc.relationLeón, O., Jiménez, D., & Marín, C. (2015). Marco conceptual para la identificación de la zona de transición entre el bosque altoandino y páramo. In C. Sarmiento & O. León (Eds.), Transición bosque páramo. Bases conceptuales y métodos para su identificación en los Andes colombianos. (p. 156). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
dc.relationLuteyn, J. (1999). Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Costa Rica and Panama. Memoirs of the New York Botanical Garden, 84, 138-141.
dc.relationMadriñán, S., Cortés, A. J., & Richardson, J. E. (2013). Páramo is the world's fastest evolving and coolest biodiversity hotspot. In Frontiers in Genetics (Vol. 4).
dc.relationMarín, C., Medina-Rangel, G., Jiménez, D., Sarmiento, M., León, O., Díaz-Triana, J., & Paiba, J. (2015). Protocolos metodológicos para la caracterización de las comunidades bióticas a lo largo del gradiente altitudinal bosque-páramo. In C. E. Sarmiento Pinzón & O. A. León Moya (Eds.), Transición bosque páramo. Bases conceptuales y métodos para su identificación en los Andes colombianos (Primera Ed, p. 156). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
dc.relationMedina, E. (1974). Dark CO2 fixation, habitat preference and evolution within the bromeliaceae. Evolution, 28(4), 677-686. https://doi.org/10.1111/j.1558-5646.1974.tb00799.x
dc.relationMeinzer, F., & Goldstein, G. (1985). Some Consequences of Leaf Pubescence in the Andean Giant Rosette Plant Espeletia Timotensis. Ecology, 66(2), 512-520. https://doi.org/10.2307/1940399
dc.relationMelcher, I. M., Bouman, F., & Cleef, A. M. (2004). Seed atlas of the monocotyledonous genera of the páramo. Flora - Morphology, Distribution, Functional Ecology of Plants, 199(4), 286-308. https://doi.org/10.1078/0367-2530-00157
dc.relationMonasterio, M., & Sarmiento, L. (1991). Adaptive radiation of Espeletia in the cold andean tropics. Trends in Ecology & Evolution, 6(12), 387-391. https://doi.org/10.1016/0169-5347(91)90159-U
dc.relationMora, F., Chaparro, H. A., & Vargas, O. (2007). Dinámica de la germinación, latencia de semillas y reclutamiento de plántulas en Puya cryptantha y P. trianae, dos rosetas gigantes de los páramos colombianos. Ecotropicos, 20(1), 31-40.
dc.relationMora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Walton, M. M., Tong, E. J., Sanchez, J. J., Kaiser, L. R., Stender, Y. O., Anderson, J. M., Ambrosino, C. M., Fernandez-Silva, I., Giuseffi, L. M., & Giambelluca, T. W. (2013). The projected timing of climate departure from recent variability. Nature, 502(7470), 183-187. https://doi.org/10.1038/nature12540
dc.relationNürk, N. M., Michling, F., & Linder, H. P. (2018). Are the radiations of temperate lineages in tropical alpine ecosystems pre-adapted Global Ecology and Biogeography, 27(3), 334-345. https://doi.org/10.1111/geb.12699
dc.relationO'Sullivan, O. S., Weerasinghe, K. W. L. K., Evans, J. R., Egerton, J. J. G., Tjoelker, M. G., & Atkin, O. K. (2013). High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant, Cell and Environment, 36(7), 1268-1284. https://doi.org/10.1111/pce.12057
dc.relationPeyre, G., Lenoir, J., Karger, D. N., Gomez, M., Gonzalez, A., Broennimann, O., & Guisan, A. (2020). The fate of páramo plant assemblages in the sky islands of the northern Andes. Journal of Vegetation Science, 31(6), 967-980. https://doi.org/10.1111/jvs.12898
dc.relationPosada, J. (2013). El rol de la dispersión de semillas en la regeneración de la vegetación de páramo en un paisaje fragmentado (Tesis de Maestría). [Tesis de maestría]. Universidad de los Andes.
dc.relationRada, F. (2016). Functional Diversity in Tropical High Elevation Giant Rosettes. In G. Goldstein & L. S. Santiago (Eds.), Tropical Tree Physiology: Adaptations and Responses in a Changing Environment (pp. 181-202). Springer International Publishing. https://doi.org/10.1007/978-3-319-27422-5_8
dc.relationRada, F., Azócar, A., Gonzalez, J., & Briceño, B. (1998). Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecologica, 19(1), 73-79. https://doi.org/10.1016/S1146-609X(98)80010-6
dc.relationRada, F., Azócar, A., & García-Núñez, C. (2019). Plant functional diversity in tropical Andean páramos. Plant Ecology & Diversity, 1-15. https://doi.org/10.1080/17550874.2019.1674396
dc.relationRada, F., Goldstein, G., Azócar, A., & Meinzer, F. (1985). Freezing avoidance in Andean giant rosette plants. Plant, Cell & Environment, 8(7), 501-507. https://doi.org/10.1111/j.1365-3040.1985.tb01685.x
dc.relationRada, F., Goldstein, G., Azócar, A., & Torres, F. (1987). Supercooling along an Altitudinal Gradient in Espeletia schultzii, a Caulescent Giant Rosette Species. In Journal of Experimental Botany (Vol. 38). https://doi.org/10.1093/jxb/38.3.491
dc.relationRada, F., Gonzalez, J., Azócar, A., Briceño, B., & Jaimez, R. (1992). Net photosynthesis-leaf temperature relations in plant species with height along an altitudinal gradient. Acta Oecologica13, 13(5), 535-542.
dc.relationRistic, Z., Bukovnik, U., & Prasad, P. V. V. (2007). Correlation between Heat Stability of Thylakoid Membranes and Loss of Chlorophyll in Winter Wheat under Heat Stress. In Crop Science (Vol. 47). https://doi.org/10.2135/cropsci2006.10.0674
dc.relationScafaro, A. P., Xiang, S., Long, B. M., Bahar, N. H. A., Weerasinghe, L. K., Creek, D., Evans, J. R., Reich, P. B., & Atkin, O. K. (2017). Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: The importance of altered Rubisco content. Global Change Biology, 23(7), 2783-2800. https://doi.org/10.1111/gcb.13566
dc.relationSklená, P., & Balslev, H. (2005). Superpáramo plant species diversity and phytogeography in Ecuador. Flora - Morphology, Distribution, Functional Ecology of Plants, 200(5), 416-433. https://doi.org/10.1016/j.flora.2004.12.006
dc.relationSklená, P., Kuerová, A., Macková, J., & Romoleroux, K. (2016). Temperature Microclimates of Plants in a Tropical Alpine Environment: How Much does Growth Form Matter Arctic, Antarctic, and Alpine Research, 48(1), 61-78. https://doi.org/10.1657/AAAR0014-084
dc.relationSmith, A. P. (1974). Bud Temperature in Relation to Nyctinastic Leaf Movement in an Andean Giant Rosette Plant. Biotropica, 6(4), 263-266. https://doi.org/10.2307/2989670
dc.relationSmith, A. (1979). Function of Dead Leaves in Espeletia schultzii (Compositae), and Andean Caulescent Rosette Species. In Biotropica (Vol. 11). https://doi.org/10.2307/2388171
dc.relationSmith, A. P. (1980). The Paradox of Plant Height in an Andean Giant Rosette Species. Journal of Ecology, 68(1), 63-73. https://doi.org/10.2307/2259244
dc.relationSmith, A. P. (1994). Introduction to tropical alpine vegetation. In Tropical alpine environments: Plant form and function (pp. 1-17).
dc.relationSmith, A. P., & Young, T. P. (1987). Tropical Alpine Plant Ecology. Annual Review of Ecology and Systematics, 18(1), 137-158. https://doi.org/10.1146/annurev.es.18.110187.001033
dc.relationSuter, M., & Edwards, P. J. (2013). Convergent succession of plant communities is linked to species¿ functional traits. Perspectives in Plant Ecology, Evolution and Systematics, 15(4), 217-225. https://doi.org/10.1016/j.ppees.2013.05.001
dc.relationVan der Hammen, T., Pabón Caicedo, J. D., Gutiérrez, H., & Alarcón, J. C. (2002). El Cambio Global y los Ecosistemas de Alta Montaña de Colombia. In Páramos y Ecosistemas Alto Andinos de Colombia en Condición HotSpot & Global Climatic Tensor (pp. 162-209).
dc.relationVargas, O., Pérez-Martínez, L., Insuasty, J., Rodriguez Castillo, N. A., & Melgarejo, L. M. (2014). Semillas de plantas de páramo: Ecología y métodos de germinación aplicados a la restauración ecológica.
dc.relationWay, D. A., & Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiology, 30(6), 669-688. https://doi.org/10.1093/treephys/tpq015
dc.relationWay, D. A., & Sage, R. F. (2008). Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.]. Plant, Cell and Environment, 31(9), 1250-1262. https://doi.org/10.1111/j.1365-3040.2008.01842.x
dc.relationYamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynthesis Research, 119(1-2), 101-117. https://doi.org/10.1007/s11120-013-9874-6
dc.relationYamori, W., Noguchi, K., & Terashima, I. (2005). Temperature acclimation of photosynthesis in spinach leaves: Analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment, 28(4), 536-547. https://doi.org/10.1111/j.1365-3040.2004.01299.x
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleIdentification of functional groups in páramo plants and evaluation of their susceptibility to global climate change
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución