dc.contributor | Plazas Tuttle, Jaime Guillermo | |
dc.contributor | Rodríguez Sánchez, Juan Pablo | |
dc.contributor | Vives Flórez, Martha Josefina | |
dc.contributor | Centro de Investigaciones en Ingeniería Ambiental - CIIA | |
dc.creator | Bautista Chivatá, Juan Camilo | |
dc.date.accessioned | 2022-07-12T15:01:15Z | |
dc.date.available | 2022-07-12T15:01:15Z | |
dc.date.created | 2022-07-12T15:01:15Z | |
dc.date.issued | 2022-06-15 | |
dc.identifier | http://hdl.handle.net/1992/58746 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | El COVID-19 es una enfermedad infecciosa provocada por el virus SARS-CoV-2. A la fecha millones de contagios y muertes se han reportado alrededor del mundo. La ruta de trasmisión conocida es a través de la aerosolización de gotas cargadas de virus. Sin embargo, el virus ha sido detectado en aguas residuales y cuerpos de agua superficiales como los ríos. No se descarta el agua como ruta alternativa de transmisión y/o reinfección, especialmente en países donde el saneamiento es deficiente. Por otra parte, los métodos convencionales de tratamiento de aguas presentan limitaciones para su desinfección. En el presente estudio se propone el uso de cavitación hidrodinámica para la desinfección de un virus sustituto de SARS-CoV-2 usando microfluídica; así como la degradación de sustitutos de contaminantes orgánicos como valor agregado del microrreactor propuesto. Se fabricó un microrreactor tipo Venturi de polimetilmetacrilato mediante corte láser de CO2 de bajo costo. Además, se modeló el diseño propuesto mediante dinámica de fluidos computacional. Los resultados muestran que los ensayos microbiológicos no logran el tratamiento esperado para el virus ¿San23 después de 2 horas. Por otro lado, se logra demostrar la degradación parcial de los colorantes a partir de una concentración inicial de 0.5 mg/L y se evaluó el efecto de la temperatura en la tasa de degradación del azul de metileno. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Ambiental | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Civil y Ambiental | |
dc.relation | [1] H. N. Tran, G. T. Le, D. T. Nguyen, R.-S. Juang, J. Rinklebe, A. Bhatnagar, E. C. Lima, H. M. N. Iqbal, A. K. Sarmah, and H.-P. Chao, "SARS-COV-2 coronavirus in water and wastewater: A critical review about presence and concern," Environmental Research, vol. 193, p. 110265, 2021. | |
dc.relation | [2] Mohapatra, N. G. Menon, G. Mohapatra, L. Pisharody, A. Pattnaik, N. G. Menon, P. L. Bhukya, M. Srivastava, M. Singh, M. K. Barman, K. Y.-H. Gin, and S. Mukherji, "The novel SARS-COV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment," Science of The Total Environment, vol. 765, p. 142746, 2021. | |
dc.relation | [3] A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, and A. Rouhi, "Review on heterogeneous photocatalytic disinfection of Waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses", Journal of Colloid and Interface Science, vol. 580, pp. 503¿514, 2020. | |
dc.relation | [4] M. Zupanc, . Pandur, T. Stepinik Perdih, D. Stopar, M. Petkovek, and M. Dular, "Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research," Ultrasonics Sonochemistry, vol. 57, pp. 147-165, 2019. | |
dc.relation | [5] J. Ozonek, Application of hydrodynamic cavitation in environmental engineering. Boca Raton: CRC Press, 2012. | |
dc.relation | [6] D. Chen, S. K. Sharma, and A. Mudhoo, Handbook on applications of ultrasound: Sonochemistry for Sustainability. Boca Raton: CRC Press-Taylor & Francis, 2012. | |
dc.relation | [7] M. Yadav, J. Sharma, R. K. Yadav, and V. L. Gole, "Microbial disinfection of water using hydrodynamic cavitational reactors," Journal of Water Process Engineering, vol. 41, p. 102097, 2021. | |
dc.relation | [8] G. Medema, L. Heijnen, G. Elsinga, R. Italiaander, and A. Brouwer, "Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands," Environmental Science & Technology Letters, vol. 7, no. 7, pp. 511-516, 2020. | |
dc.relation | [9] S. P. Sherchan, S. Shahin, L. M. Ward, S. Tandukar, T. G. Aw, B. Schmitz, W. Ahmed, and M. Kitajima, "First detection of SARS-COV-2 RNA in wastewater in North America: A study in Louisiana, USA," Science of The Total Environment, vol. 743, p. 140621, 2020. | |
dc.relation | [10] E. Haramoto, B. Malla, O. Thakali, and M. Kitajima, "First environmental surveillance for the presence of SARS-COV-2 RNA in wastewater and river water in Japan," Science of The Total Environment, vol. 737, p. 140405, 2020. | |
dc.relation | [11] G. La Rosa, M. Iaconelli, P. Mancini, G. Bonanno Ferraro, C. Veneri, L. Bonadonna, L. Lucentini, and E. Suffredini, "First detection of SARS-COV-2 in untreated wastewaters in Italy," Science of The Total Environment, vol. 736, p. 139652, 2020. | |
dc.relation | [12] W. Ahmed, N. Angel, J. Edson, K. Bibby, A. Bivins, J. W. O'Brien, P. M. Choi, M. Kitajima, S. L. Simpson, J. Li, B. Tscharke, R. Verhagen, W. J. M. Smith, J. Zaugg, L. Dierens, P. Hugenholtz, K. V. Thomas, and J. F. Mueller, ¿First confirmed detection of SARS-COV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of covid-19 in the community,¿ Science of The Total Environment, vol. 728, p. 138764, 2020. | |
dc.relation | [13] W. Randazzo, P. Truchado, E. Cuevas-Ferrando, P. Simón, A. Allende, and G. Sánchez, "SARS-COV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area," Water Research, vol. 181, p. 115942, 2020. | |
dc.relation | [14] L. Guerrero-Latorre, I. Ballesteros, I. Villacrés-Granda, M. G. Granda, B. Freire-Paspuel, and B. Ríos-Touma, "SARS-COV-2 in river water: Implications in low sanitation countries," Science of The Total Environment, vol. 743, p. 140832, 2020. | |
dc.relation | [15] Saawarn and S. Hait, "Occurrence, fate and removal of SARS-COV-2 in wastewater: Current knowledge and future perspectives," Journal of Environmental Chemical Engineering, vol. 9, no. 1, p. 104870, 2021. | |
dc.relation | [16] A. Bhatt, P. Arora, and S. K. Prajapati, "Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-COV-2," Journal of Environmental Chemical Engineering, vol. 8, no. 5, p. 104429, 2020. | |
dc.relation | [17] S. B. Khan, K. Akhtar (Eds.) Photocatalysts - Applications and Attributes. London, United Kingdom, IntechOpen, 2019 [Online]. Disponible: https://www.intechopen.com/books/7478 doi: 10.5772/intechopen.75848 | |
dc.relation | [18] X. Wang et al., "Study on the resistance of severe acute respiratory syndrome-associated coronavirus", Journal of Virological Methods, vol. 126, pp. 171¿177. | |
dc.relation | [19] S. Romano-Bertrand, L.-S. Aho Glele, B. Grandbastien, and D. Lepelletier, "Preventing SARS-COV-2 transmission in rehabilitation pools and therapeutic water environments," Journal of Hospital Infection, vol. 105, no. 4, pp. 625-627, 2020. | |
dc.relation | [20] A. Buonerba, M. V. Corpuz, F. Ballesteros, K.-H. Choo, S. W. Hasan, G. V. Korshin, V. Belgiorno, D. Barceló, and V. Naddeo, "Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications," Journal of Hazardous Materials, vol. 415, p. 125580, 2021. | |
dc.relation | [21] B. Bayarri, A. Cruz-Alcalde, N. López-Vinent, M. M. Micó, and C. Sans, ¿CAN ozone inactivate SARS-COV-2? A review of mechanisms and performance on viruses,?" Journal of Hazardous Materials, vol. 415, p. 125658, 2021. | |
dc.relation | [22] Q. Shi, Z. Chen, H. Liu, Y. Lu, K. Li, Y. Shi, Y. Mao, and H.-Y. Hu, "Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents," Science of The Total Environment, vol. 758, p. 143641, 2021. | |
dc.relation | [23] S. Percival, D. Williams y N. Gray, Microbiology of waterborne diseases, 2a ed. Amsterdam: Elsevier, 2004. | |
dc.relation | [24] H. Inagaki, A. Saito, H. Sugiyama, T. Okabayashi, and S. Fujimoto, "Rapid inactivation of SARS-COV-2 with deep-UV led irradiation," Emerging Microbes & Infections, vol. 9, no. 1, pp. 1744-1747, 2020. | |
dc.relation | [25] M. Biasin, A. Bianco, G. Pareschi, A. Cavalleri, C. Cavatorta, C. Fenizia, P. Galli, L. Lessio, M. Lualdi, E. Tombetti, A. Ambrosi, E. M. Redaelli, I. Saulle, D. Trabattoni, A. Zanutta, and M. Clerici, "UV-C irradiation is highly effective in inactivating SARS-COV-2 replication," Scientific Reports, vol. 11, pp. 1-7, 2020. | |
dc.relation | [26] X. Su, S. Zivanovic, and D. H. D'Souza, "Inactivation of human enteric virus surrogates by high-intensity ultrasound," Foodborne Pathogens and Disease, vol. 7, no. 9, pp. 1055-1061, 2010. | |
dc.relation | [27] Chen, S. K. Sharma, and A. Mudhoo, Handbook on applications of ultrasound: Sonochemistry for Sustainability. Boca Raton: CRC Press-Taylor & Francis, 2012. | |
dc.relation | [28] Kosel, I. Gutiérrez-Aguirre, N. Ra¿ki, T. Dreo, M. Ravnikar, and M. Dular, "Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation," Water Research, vol. 124, pp. 465-471, 2017. | |
dc.relation | [29] M. Yadav, J. Sharma, R. K. Yadav, and V. L. Gole, "Microbial disinfection of water using hydrodynamic cavitational reactors," Journal of Water Process Engineering, vol. 41, p. 102097, 2021. | |
dc.relation | [30] T. Baldacchini, Three-dimensional microfabrication using two-photon polymerization: Fundamentals, technology and applications. Amsterdam: Elsevier, 2016. | |
dc.relation | [31] J. Reedijk and N. Barnett, Reference module in chemistry, Molecular Sciences and chemical engineering. Elsevier. | |
dc.relation | [32] M. Tonner, "'Extreme' Microfluidics: Large-volumes and Complex Fluids," arXiv: Fluid Dynamics, 2018. | |
dc.relation | [33] P. L. Suryawanshi, S. P. Gumfekar, B. A. Bhanvase, S. H. Sonawane, and M. S. Pimplapure, "A review on microreactors: Reactor fabrication, design, and cutting-edge applications," Chemical Engineering Science, vol. 189, pp. 431-448, 2018. | |
dc.relation | [34] J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, "Femtosecond laser ablation of polymethyl-methacrylate with high focusing control," Applied Surface Science, vol. 278, pp. 185-189, 2013. | |
dc.relation | [35] S. Prakash and S. Kumar, "Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask," Optics & Laser Technology, vol. 94, pp. 180-192, 2017. | |
dc.relation | [36] H. Sun, J. Qin, L. Yi, Y. Ruan, Y. Sun, J. Wang, and D. Fang, "Study on negative pressure assisted hydrodynamic cavitation (NPA-HC) degradation of methylene blue in dye wastewater," Chemical Engineering Research and Design, vol. 181, pp. 1-13, 2022. | |
dc.relation | [37] B. Wang, T. Wang, and H. Su, "A dye-methylene blue (mb)-degraded by hydrodynamic cavitation (HC) and combined with other oxidants," Journal of Environmental Chemical Engineering, vol. 10, no. 3, p. 107877, 2022. | |
dc.relation | [38] H. Sun, J. Qin, L. Yi, Y. Ruan, Y. Sun, J. Wang, and D. Fang, "Study on negative pressure assisted hydrodynamic cavitation (NPA-HC) degradation of methylene blue in dye wastewater," Chemical Engineering Research and Design, vol. 181, pp. 1-13, 2022. | |
dc.relation | [39] M. S. Kumar, S. H. Sonawane, and A. B. Pandit, "Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes," Chemical Engineering and Processing: Process Intensification, vol. 122, pp. 288-295, 2017. | |
dc.relation | [40] T. Li, B. Liu, J. Zhou, W. Xi, X. Huai, and H. Zhang, "A comparative study of cavitation characteristics of nano-fluid and deionized water in micro-channels," Micromachines, vol. 11, no. 3, p. 310, 2020. | |
dc.relation | [41] A. Kumar, A. Ghobadian, and J. M. Nouri, "¿Assessment of cavitation models for compressible flows inside a nozzle," Fluids, vol. 5, no. 3, p. 134, 2020. | |
dc.relation | [42] G. Cazzoli, S. Falfari, G. M. Bianchi, C. Forte, and C. Catellani, "Assessment of the cavitation models implemented in openfoam® under di-like conditions," Energy Procedia, vol. 101, pp. 638-645, 2016. | |
dc.relation | [43] Y. Deng, J. Feng, F. Wan, X. Shen, and B. Xu, "Evaluation of the turbulence model influence on the numerical simulation of cavitating flow with emphasis on temperature effect," Processes, vol. 8, no. 8, p. 997, 2020. | |
dc.relation | [44] M. Zhao, D. Wan, and Y. Gao, "Comparative study of different turbulence models for cavitational flows around NACA0012 hydrofoil," Journal of Marine Science and Engineering, vol. 9, no. 7, p. 742, 2021. | |
dc.relation | [45] F. Ayela, W. Cherief, D. Colombet, G. Ledoux, M. Martini, S. Mossaz, D. Podbevsek, X. Qiu, and O. Tillement, "Hydrodynamic cavitation through 'labs on a chip': From fundamentals to applications," Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, vol. 72, no. 4, p. 19, 2017. | |
dc.relation | [46] A. L. Stanford and J. M. Tanner, Physics for students of Science and Engineering. Burlington: Elsevier Science, 2014. | |
dc.relation | [47] M. R. Cerqueira, M. S. Santos, R. C. Matos, I. G. Gutz, and L. Angnes, "Use of poly(methyl methacrylate)/polyethyleneimine flow microreactors for enzyme immobilization," Microchemical Journal, vol. 118, pp. 231¿237, 2015. | |
dc.relation | [48] X. Chen, J. Shen, and T. Li, "PMMA microreactor for chemiluminescence detection of Cu (II) based on 1,10-phenanthroline-hydrogen peroxide reaction," Journal of Food Science and Technology, vol. 53, no. 1, pp. 915-919, 2015. | |
dc.relation | [49] J. Rooze, M. André, G.-J. S. van der Gulik, D. Fernández-Rivas, J. G. Gardeniers, E. V. Rebrov, J. C. Schouten, and J. T. Keurentjes, "Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers," Microfluidics and Nanofluidics, vol. 12, no. 1-4, pp. 499-508, 2011. | |
dc.relation | [50] SimuTech Group. "Why is Ansys Meshing Important for Structural FEA and Fluid CFD Simulations?" https://simutechgroup.com/why-is-meshing-important-for-fea-fluid-simulations/ (accedido el 3 de junio de 2022). | |
dc.relation | [51] M. Ghorbani, "The hydrodynamic cavitation manifestation in small chips," IEEE Access, vol. 9, pp. 110517-110524, 2021. | |
dc.relation | [52] ANSYS, Inc. "ANSYS FLUENT 12.0/12.1 Documentation. Pressure-velocity coupling". https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node373.htm (accedido el 3 de junio de 2022). | |
dc.relation | [53] F. Rokhsar Talabazar, M. Jafarpour, M. Zuvin, H. Chen, M. T. Gevari, L. G. Villanueva, D. Grishenkov, A. Koar, and M. Ghorbani, "Design and fabrication of a vigorous ¿cavitation-on-a-chip" device with a multiple microchannel configuration,¿ Microsystems & Nanoengineering, vol. 7, no. 1, 2021. | |
dc.relation | [54] M. T. Gevari, A. Parlar, M. Torabfam, A. Koar, M. Yüce, and M. Ghorbani, "Influence of fluid properties on intensity of hydrodynamic cavitation and deactivation of salmonella typhimurium," Processes, vol. 8, no. 3, p. 326, 2020. | |
dc.relation | [55] A. B. Khoshaim, A. H. Elsheikh, E. B. Moustafa, M. Basha, and E. A. Showaib, "Experimental investigation on laser cutting of PMMA sheets: Effects of process factors on Kerf characteristics," Journal of Materials Research and Technology, vol. 11, pp. 235-246, 2021. | |
dc.relation | [56] A. Filipi, T. Lukei, K. Banik, M. Ravnikar, M. Jeelnik, T. Koir, M. Petkovek, M. Zupanc, M. Dular, and I. G. Aguirre, "Hydrodynamic cavitation efficiently inactivates potato virus Y in water," Ultrasonics Sonochemistry, vol. 82, p. 105898, 2022. | |
dc.relation | [57] S. Das, A. P. Bhat, and P. R. Gogate, "Degradation of dyes using hydrodynamic cavitation: Process overview and cost estimation," Journal of Water Process Engineering, vol. 42, p. 102-126, 2021. | |
dc.relation | [58] M. Ge, G. Zhang, M. Petkovek, K. Long, and O. Coutier-Delgosha, "Intensity and regimes changing of hydrodynamic cavitation considering temperature effects," Journal of Cleaner Production, vol. 338, p. 130470, 2022. | |
dc.relation | [59] M. S. Kumar, S. H. Sonawane, and A. B. Pandit, "Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes," Chemical Engineering and Processing: Process Intensification, vol. 122, pp. 288¿295, 2017. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Inactivación de virus y degradación de compuestos orgánicos a través de cavitación hidrodinámica en microrreactores | |
dc.type | Trabajo de grado - Maestría | |