dc.contributorCabrera Cabrera, Miguel Ángel
dc.creatorBedoya Rodríguez, Lauren Lucía
dc.date.accessioned2022-06-14T19:47:59Z
dc.date.available2022-06-14T19:47:59Z
dc.date.created2022-06-14T19:47:59Z
dc.date.issued2022-06-07
dc.identifierhttp://hdl.handle.net/1992/57944
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractEste proyecto pretende utilizar un modelo de elevación digital para estimar la distribución del espesor del suelo en el terreno; lo cual permitiría reducir la incertidumbre de las predicciones resultantes al hacer uso de programas predictivos que tomen como parámetro de entrada la distribución obtenida. Esto a través del estudio de diversos métodos y específicamente la implementación computacional de las ecuaciones planteadas por Stothoff (2008); estas ecuaciones se resuelven por medio del método numérico de bisección y el lenguaje de Python. Asimismo, se pretende hacer un ejercicio de verificación por medio del software OpenLisem.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherIngeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Civil y Ambiental
dc.relationBout, B., Lombardo, L., van Westen, C. & Jetten, V. (2018). Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environmental Modelling Software
dc.relationCohen, D., Lehmann, P. & Or, D. (2009). Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides. Water resources research, 45
dc.relationDietrich, R., Trustrum, N. & Blaschke, P. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes
dc.relationFan, L., Lehman, P., McArdell, B. & Or, D. (2017). Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology.
dc.relationFroude, M. & Petley, D. (2018). Global fatal landslide ocurrence from 2004 to 2016.
dc.relationHo, J. Y., Lee, K. T., Chang, T. C., Wang, Z. Y. & Liao, Y. H. (2012). Influences of spatial distribution of soil thickness on shallow landslide prediction. Engineering Geology, 124, 38-46. https://doi.org/10.1016/j.enggeo.2011.09.013
dc.relationMarulanda, M., Cardona, O. & Barbat, A. (2010). Revealing the socioeconomic impact of small disasters in Colombia using thyeh DesInventar database
dc.relationMergili, M., Emmer, A., Ju¿ricov´a, A., Cochachin, A., Fischer, J., Huggel, C. & Pudasaini, S. (2018). How well can we simulate complex hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Per´u). Earth Surface Processes and Landforms.
dc.relationMergili, M., Fischer, J. T. & Pudasaini, S. P. (2017). Process chain modelling with r. avaflow: lessons learned for multi-hazard analysis.
dc.relationMontgomory, D. & Dietrich, W. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research.
dc.relationOjeda, J. & Donnelly, L. (2006). Landslides in Colombia and their impact on towns and cities.
dc.relationReid, M. E., Christian, S. B., Brien, D. L. & Henderson, S. T. (2015). Scoops3D¿Software to Analyze Threedimensional Slope Stability Throughout a Digital Landscape. In Tech. Rep. US Geological Survey Techniques and Methods.
dc.relationSánchez, O. & Edier, A. (2018). Spatial and temporal patterns and socioeconomic impact of landslides in Colombia.
dc.relationSchuster, R., Salcedo, D. & Valenzuela, L. (2002). Overview of catastrophic landslides of South America in the twentieth century
dc.relationSiddiqi, A., Peters, K. & Zulver, J. (2019). "Doble afectación": living with disasters and conflict in Colombia.
dc.relationSIMMA. (s.f.). Servicio Geol´ogico Colombiano - Búsqueda de registros de movimientos en masa.
dc.relationSmith, H., Coupl´e, F., Garcia-Ferrari, S., Rivera, H. & Castro, W. (2020). Toward negotiated mitigation of landslide risks in informal settlements: reflections from a pilot expirience in Medellin, Colombia.
dc.relationStothoff, S. (2008). Infiltration Tabulator for Yucca Mountain: Bases and Confirmation
dc.relationThe World Bank Colombia & Global Facility for Disaster Reduction and Recovery. (2012). Analysis of Disaster Risk Management in Colombia Analysis of Disaster Risk Management in Colombia Coordinators and Editors.
dc.relationUSGS. (2004). Landslide Types and Processes
dc.relationvan den Bout, B., Tang, C., van Westen, C. & Jetten, V. (2022). Physically-Based Modelling of co-seismicLandslide, Debris Flow and Flood Cascade. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences Ministry of Water Conservancy.
dc.relationvan den Bout, B. & Jetten, V. (2014). A brief guide to OpenLisem.
dc.relationVan Westen, C. J., Augusto Fonseca, F. & van den Bout, B. (2020). Challenges in analyzing landslide risk dynamics for risk reduction planning.
dc.relationVon Ruette, J., Lehmann, P. & Or, D. (2013). Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization. Water Resources Research, 49, 6266-6285. https://doi.org/10.1002/wrcr.20418
dc.relationWu, W. & Sidle, R. (1995). A distributed slope stability model for steep forested basins. Water Resources Research.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleEstimación de la distribución del espesor de suelo a partir de un modelo de elevación digital como herramienta para el análisis de inestabilidad de taludes.
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución